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Abstract—We describe an end-to-end platform called
SpecSense to support large scale spectrum monitoring.
SpecSense crowdsources spectrum monitoring to low-cost,
low-power commodity SDR/embedded platforms and provides
necessary analytics support in a central spectrum server. In this
work, we describe SpecSense and address specific challenges
related to accurately estimate spectrum occupancy on demand
with low overhead. To address the accuracy question, we augment
state-of-the-art spatial interpolation techniques to accommodate
scenarios where RF propagation characteristics change across
space. To address the overhead question, we solve the sensor
selection problem to select the minimum number of spectrum
sensors that can best estimate the spectrum at the requested
locations.

I. INTRODUCTION

There is a growing realization that the RF spectrum must
be treated as an important natural resource that is in limited
supply. This stems from unbridled growth of mobile data
and the need to support emerging applications such as M2M
communications, telemedicine, autonomous cars/drones and
mobile virtual/augmented reality. Policy makers have been
promoting new forms of spectrum sharing models to replace
the regimented spectrum allocation models in existence to-
day [3], [6]. The goal is to improve spectrum utilization as a
means to alleviate any future spectrum crunch.

Just like any other resource with mismatched demand and
supply, all steps towards better utilization from both technical
and policy angles have increased the need for large scale spec-
trum monitoring [15], [25]. Large scale spectrum monitoring
serves two primary purposes: (i) it can aid effective spectrum
sharing technologies by identifying spectrum opportunities [3],
[13]; (ii) it can act as a vehicle for deeper understanding of
spectrum use across time and space [25]. The latter serves as
a driver for future policy and technical directions. Alongside,
indirect needs are also growing such as spectrum patrolling to
detect unauthorized spectrum use [18], [37]. While the need
for RF spectrum monitoring is not a new realization by itself,
current approaches suffer from two significant limitations:
1) Lack of scalability: Most exiting approaches on RF spec-

trum monitoring [4], [20], [25] do not scale. For example,
approaches such as Specnet [20] or Microsoft spectrum
observatory [4] require use of relatively expensive spectrum
sensing stations that are networked with data delivered to

†The first two authors are co-primary student authors.

central, perhaps cloud-based platforms.1 Alternatives such
as Vscope [36] can provide fine-grain data across space, but
are limited to contracted vehicular platforms.

2) Lack of application support: There is a growing body
of work on applications that can benefit from spectrum
awareness, such as spectrum opportunity detection, shared
spectrum models [6], [12], [13], RF-based localization [22],
transmitter identification [18], [37], spectrum analytics [33],
etc. However, there is virtually no attempt in the community
to couple such applications to large-scale spectrum mon-
itoring. This is a missed opportunity as applications are
important drivers for large-scale deployments.
In the SpecSense project, we are creating an infrastruc-

ture that integrates scalable RF spectrum monitoring with
application support, and build an end-to-end system with
monitoring data and connected apps working seamlessly at
scale. The idea is to develop (1) an effective crowdsourcing
mechanism using low-cost, low-power sensors [26], [28] to
support distributed fine grain spectrum sensing, along with (2)
necessary support for spectrum-aware applications. There is a
growing evidence that incentive mechanisms can be developed
to enable crowdsourcing measurements of this kind once data
is considered valuable. A good example is FlightAware [2],
a popular flight tracking company, which uses low-cost com-
modity RF sensor hardware (similar platforms as in this work)
to capture ADS-B signals emitted from airplanes flying over-
head. The power of FlightAware comes from crowdsourcing
with 5000+ sensing sites worldwide, collating such data on
the backend to track flights.

Fig. 1 provides an an overview of SpecSense. In
SpecSense, the spectrum-aware apps are the drivers and
spectrum data is collected and processed as needed by such
apps. Supporting such on-demand mechanism is critical as
large-scale spectrum data with fine time/frequency precision
is unrealistic to collect and maintain.
Contributions: A large number of interesting technical chal-
lenges arise in SpecSense. For brevity we will focus our
attention to only a few of them in this paper. We first show
how crowdsourcing with large number of inexpensive RF
sensors can be beneficial (Section II). In SpecSense, many
applications have the canonical need to estimate the RF power

1This limitation is clearly evidenced by very limited actual deployment of
Microsoft’s observatory (only 11 stations in the US) even after several years
of effort and all software tools made available.
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Fig. 1: End-to-end overview of SpecSense, with pointers to section numbers where the relevant component have been
described.

within a specific frequency range at certain locations. We will
address two challenges that arise to efficiently answer such
“spectrum occupancy” queries.
(i) Accurate spatial interpolation of RF signals: To accurately

answer spectrum occupancy queries, we need to develop
effective techniques for spatial interpolation of RF signals.
Thus, we extend the state-of-the-art spatial interpolation
techniques to our specific context of RF signals (Section III).

(ii) Optimizing sensor selection: Sensors in SpecSense may
run on battery-driven embedded platforms; thus, optimizing
their battery drain and/or backhaul data communication is
important. Many sensors depending on their location and/or
capability may provide little benefit to the application’s
need of estimating spectrum occupancy. Thus, we develop
techniques to select the best set of sensors under a given
budget to serve a given set of spectrum occupancy queries
(Section IV).

A systems level performance evaluation is presented in Sec-
tion V in the prototype SpecSense system.

II. POWER OF INEXPENSIVE SENSORS

SpecSense’s reliance on crowdsourcing means that the
spectrum sensors cannot be large, power hungry, or expensive.
In case of spectrum monitoring, a question arises whether
inexpensive sensors with higher noise can be effective at
all, compared to, say, expensive and more accurate lab-grade
sensors. To investigate this issue, we have run a measurement
study that shows that the inaccuracy of individual sensors can
be countered by simply having more numerous sensors.

Our measurements scan part of the UHF TV spectrum
(channel 21–51) and log: (i) the power spectral density (i.e.,
power for each frequency bin) for each 6 MHz TV chan-
nel, and (ii) the location coordinates of the measurement
point. We use three different software-defined radio (SDR)
platforms simultaneously on a moving vehicle to do the
same measurements. One of them, ThinkRF WSA5000 [8],
is a wide-band spectrum analyzer providing industry-standard
sensitivity, tuning range, instantaneous bandwidth and scan
rate. It serves as the reference platform as an example of
a laboratory-grade, well-provisioned spectrum sensor with a

high sensitivity. The two other platforms are BladeRF [1] and
RTL-SDR dongle [14], [26]. These are USB-powered devices
with far limited capability. Their cost and power consumption
are 1 order (BladeRF) to 2 orders (RTL-SDR) of magnitude
lower than ThinkRF.
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Fig. 2: Error Performance vs. deployment density for spectrum
sensors of different types.

For each platform, we collected 4K+ measurements over
different locations over a ≈150 mile drive. Using the geo-
tagged spectrum measurements, we evaluated the total power
in each of the 30 TV channels as sensed by these sensors
at various locations. Then, we create a spectrum occupancy
map by estimating the channel power at any given location
in the given region using spatial interpolation (IDW; see
Section III). We assume that measurements from the reference
device (ThinkRF) provide the ground truth.

Using this data set, we can now sub-sample the measure-
ment points randomly to create scenarios with less dense
measurement data is available. See Fig. 2 for a range of
such sub-sampling cases and the corresponding median errors
(in dB) from the ground truth.2 Clearly, all devices have
decreasing error with higher density. While ThinkRF clearly
has much lower error for a given density, the same error
performance is possible at a somewhat higher density using
the other sensors. For example, the median error for ThinkRF
at 5 sensors/sq. km. is similar to the median error for the
RTL-SDR dongle at about 12 sensors/sq. km, roughly a 2.5×
higher density. BladeRF performs in between. Also, note that

2The errors are computed only at locations where ground truth measure-
ments are available.



at high density of deployment (beyond 15 sensors per sq. km.)
all sensors perform similarly regardless of capability. At this
density the interpolation error dominates.

Clearly, the tradeoff is in favor of inexpensive sensors, as
higher density still results in lower total cost and power with
the added advantage of ubiquitous operation. There are several
theoretical results in this space that also makes similar observa-
tions albeit with respect to specific signals and sensing models
(e.g., [19]). SpecSense does not rely on specific sensors,
but our current design uses above-mentioned commodity USB-
powered SDRs with mobile phone or commodity embedded
platforms.

III. SPATIAL INTERPOLATION OF RF SIGNALS

Spatial interpolation of RF signal is the key enabler for
many applications of SpecSense. The confluence of highly
granular data gathering ability in SpecSense and the need
for accurately answering the spectrum occupancy queries by
applications require revisiting of spatial interpolation tech-
niques. While prior work (e.g., [34]) has indeed considered
spatial interpolation of spectrum data, they either used syn-
thetic data or had access to much less granular data than what
SpecSense is able to gather. Thus, some of the inefficien-
cies have not been exposed. Our specific contribution here is
showcasing improved spatial interpolation of RF signals by
data collected via SpecSense. Specifically, we extend the
well-known Ordinary Kriging (OK) interpolation technique
by (i) “detrending” the signal by averaging the path-loss
exponent, and (ii) partitioning the given spatial region based
on path-loss characteristics.

A. Basics of Spatial Interpolation of RF Signals

Many interpolation techniques have been explored for RF
signals in recent works [10], [11], [29], [34], heavily borrow-
ing on huge literature available in the general area of geospatial
interpolation [24]. In a recent paper of interest [23], the authors
have presented a performance evaluation of various techniques
over signal strength data collected using commodity smart-
phones, and have observed that Ordinary Kriging (OK), Uni-
versal Kriging (UK) and Inverse Distance Weighting (IDW)
methods perform better than other techniques. Also, [24], [30]
note that the performance of UK deteriorates significantly with
decrease in density of the observation data points. Because of
this concern, we consider only IDW and OK in evaluating
SpecSense. We describe these techniques next.
Inverse Distance Weighting (IDW): This is a straightforward
interpolation technique that estimates the value at the location
s0 to be a weighted average of known values at nearby
locations, weighted by inverse of their (powers of) distances
from s0.
Ordinary Kriging (OK): Like IDW, Ordinary Kriging also
defines the predicted value as a linear combination of the
known neighboring values, but unlike IDW, the weights are
computed by minimizing the prediction variance (under certain
assumptions). The main advantage of Kriging over other
spatial interpolation techniques is that it considers the structure

of the spatial correlation (deduced through semivariograms),
and thus, yielding more reliable predictions. We start with
some basic definitions.

Let s ∈ Rd be a generic location in a d-dimensional
Euclidean space and {Z(s), s ∈ Rd} be a spatial random
function (rf), with Z denoting the attribute/signal of interest.
We assume that Z(s) is continuous, i.e., the attribute Z can
be observed at any point of the domain.
Semivariogram; Second-order Stationary. Semivariogram for
a pair of locations (si, sj) is denoted as γ(si, sj) and is defined
as half of the variance of the difference between the field
values at these locations.

A random function {Z(s), s ∈ Rd} is said to be second-
order stationary, if the following two conditions hold: (i) the
expectation E[Z(s)] is a constant, and (ii) The semivariogram
at a pair of locations s and s+ h depends only on the vector
h (called the lag), i.e., γ(s, s+ h) = γ(h) for all s and h.
OK System of Equations. Let {Z(s)} be a second-order
stationary random function. Given observation values
Z(s1), Z(s2), . . . , Z(sn) at n locations, we wish to find the
estimate Ẑ(s0) of the value Z(s0) at location s0. In particular,
we seek a linear function predictor Ẑ(s0) =

∑n
i=1 λiZ(si)

that minimizes V [Ẑ(s0) − Z(s0)], the variance of the
prediction error, where λi are the weights to be derived. With
some arithmetic manipulation and writing γij = γ(si, sj), the
goal reduces to:

Minimize 2

n∑
i=1

λiγi0 −
n∑

i=1

n∑
j=1

λiλjγij subject to
n∑

i=1

λi = 1

The above is solved using the Lagrange multiplier method with
a multiplier α, and results in the following system of Ordinary
Kriging equations:

λ1
λ2
...
λn
α

 =


γ11 γ12 · · · γ1n 1
γ21 γ22 · · · γ2n 1

...
... · · ·

...
...

γn1 γn2 · · · γnn 1
1 1 · · · 1 0


−1 

γ10
γ20

...
γn0
1

 (1)

Using the OK interpolation technique involves: (i) determining
the semivariogram function to estimate γij values (as dis-
cussed below), (ii) using the above system of equations to
predict the value at new locations.
Determining the semivariogram function: To use the above
system of equations (Eqn. (1), we need to compute γij values
from the observation data. The simplest estimator for γ(h)
(and thus, for any γij due to second-order stationary property)
is [16]:

γ(h) =
1

2|N(h)|
∑

(si,sj)∈N(h)

(Z(si)− Z(sj))
2,

where N(h) are the pairs of observations such that h − ε <
|si−sj | < h+ε with ε being a small tolerance parameter. Now,
to make the semivariogram function continuous and negative-
semidefinite, a parametric semivariogram model is usually



fitted to the above estimated model. We use the commonly
used exponential model with two parameters C and a:

γ(h) = C
(

1− e−(h/a)
)
.

See Fig. 4 for an example.
B. Improving OK by Detrending and Partitioning

In this section, we introduce two techniques to improve OK
in our context of RF signal interpolation: (i) detrending the
observation data based on average path-loss exponent, and
(ii) partitioning the given spatial region based on path-loss
characteristics.
Detrending the observation data: Recall that the rf {Z(s)}
must have a constant mean to derive the OK system of equa-
tions. To ensure this condition, we decompose the received
signal (in dBm) at si into two parts:

Z(si) = L(si) + δ(si),

where L(si) is estimated independently as shown below and
δ(si) is the component estimated by the OK technique. Here,
we implicitly assume the log-normal path-loss model, where
the received power at a distance of d from the transmitter with
a transmitter power P is given by:

P − 10α log10(d) +N(0, σ2) (2)

where N(0, σ2) reflects the attenuation due to flat fading (e.g.,
shadowing) and is represented by a Gaussian (or normal)
random variable with zero mean and variance σ2, α is the
path-loss exponent, and all power values are expressed in dBm.
Thus, we let L(si) represent the P −10α log10(d) component
of the received power and estimate it as described below, and
use OK to estimate δ(si) which has a constant mean of zero.
Estimating L(si) Values. We estimate L(si) component of the
received power as follows. The basic idea is to estimate α as
the mean of the perceived α across all observation points.
1. First, we assume that the transmitter is located at the

observation point st that has the maximum signal strength.

2. Then, we compute the “perceived” path-loss exponent αi

at observation point si to be: Z(st)− Z(si)
10 log10(di)

where Z(st)

and Z(si) are the observed values at the locations si and
the assumed transmitter location st respectively, and di is
the distance between si from st.

3. Now, we compute the mean ᾱ of the perceived αi’s, and use
it to compute the L(si) values at the observation locations
as well as the new location s0 by:

L(si) = Z(st)− 10ᾱ log10 di.

Predicting Value at New Location s0. Once L(si) component
has been estimated as above, we can compute δ(si) = Z(si)−
L(si) at the observation locations (but not s0). Finally, we
use the OK technique to estimate the δ(s0) value at the new
location s0 using the δ(si) values at the observation locations.
OK with Partitioning: In our context of predicting RF signal
values, Ordinary Kriging technique can be further improved

by partitioning the region of interest into subregions with
different path-loss characteristics and then applying the OK
technique independently for each subregion. The intuition
behind such an approach is as follows. Recall that one of the
conditions required for optimality of OK technique is that the
semivariogram at a pair of locations si and si+h depends only
on h. However, in our context of RF signal, such a condition
doesn’t really hold – partly because of the different path-loss
characteristics in different parts of the given region, and our
proposed approach of partitioning the region into subregions
is to mitigate its impact.

In particular, in the proposed partitioning approach, we
first partition the given region into subregions based on the
average path-loss characteristics, as described below. Then, we
construct semivariogram function curves for each subregion
independently (Fig. 4). Finally, to predict the value at a new
location, we first determine the subregion it belongs to, then
use neighboring observation locations from the same subregion
and the corresponding semivariogram function to predict its
value.

We note that the above partitioning technique will result in
lesser observation points in each subregion, but our experi-
ments suggest that the disadvantage due to lesser observation
points is more than offset by more accurate semivariograms
due to partitioning.

Partitioning the Region into Subregions. One simple approach
to partitioning a region into subregions is just use the terrain
information/characteristics; e.g., indoor and outdoor regions
can be considered two subregions, as they are likely to have
different path-loss characteristics. However, a terrain-based
approach is not always feasible due to lack of sufficient
information about terrain characteristics. Thus, we use the
following approach to partition the given region: First, we
compute the Voronoi diagram [27] over the observation points,
and assign the Voronoi region of an observation point as its
initial subregion. Then, we iteratively merge two adjacent
subregions into (bigger) subregions, based on the “merging
condition” defined below. This merging of adjacent subre-
gions is repeated until no two adjacent subregions satisfy the
merging-condition. Eventually, the above process results in
partitioning of the original region into contiguous subregions.

Merging Condition. First, as done before to estimate L(si)
values, we compute the perceived path-loss exponent αi at
each observation point si (by assuming the transmitter location
to be at the point with maximum signal strength). Then, we
iteratively merge two adjacent subregions, if the corresponding
two sets of perceived path-loss exponents are “similar;” in
particular, if X and Y are the 25-75 percentile ranges of the
alphai values in the two sets, then the two subregions are
merged if the overlap between the X and Y ranges is more
than 50% of the smaller of the X and Y ranges. If there are
multiple pairs of subregions that can be merged, then we pick
the pair with the largest overlap between their exponent sets.
Note that the 25-75 percentile overlap condition minimizes the
impact of any outliers.
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(b) USRP Dataset
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(c) Synthetic Dataset
Fig. 3: Median prediction errors for various interpolation techniques for the three datasets.

Fig. 4: Fitted curves of the semivariograms after partitioning
into subregions.

C. Performance of Interpolation Techniques

To showcase the improvements due to proposed detrending
and partitioning, we present a comparison of proposed OK-
based techniques, viz., Ordinary Kriging (OK), OK with
detrending (OKD), OK with partitioning (OKP), and OK
with detrending and partitioning (OKDP). We use IDW as a
baseline. For evaluation, multiple datasets are used described
in the following.
Datasets: We use three datasets: two of these are real dataset
collected using SpecSense using RTL-SDR with Nexus 5 and
Samsung Galaxy S4 phones, while the third dataset is syn-
thetic.
• Cellular Data. This data is the total signal strength collected

in AT&T’s LTE downlink (751MHz) in a 2 MHz bandwidth.
Samples were collected in 1500 locations spanning indoors
and outdoors covering a ≈15K sq m area.
• USRP Data. For this data set, a USRP transmits software-

synthesized DTV signal in an otherwise free (DTV channel
26) using a transmit power of -10dBm. The tramsmitter
is located indoors, but data is collected both indoors and
outdoors at 500 locations in a ≈5K sq m area of campus.
• Synthetic Data. Real data does not provide any way to con-

trol the shadowing variance. To study the impact on different
variances, we also consider a simulated environment with
an area of 2 km × 2 km, with two indoor subareas (with
roughly 40% area) and a transmitter placed in the center.
Using the log-normal path-loss model (Eqn. 2), we compute
the signal strength at various indoor and outdoor locations.
We use different path-loss exponents and variance (σ) of the
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Fig. 5: Median prediction errors for varying shadowing vari-
ance (indoor’s is 2σ2) for the synthetic dataset.

shadowing component for indoor and outdoor subregions.
In all, 1000 random locations were used.

Performance Comparison: For each experiment and dataset,
we randomly chose a certain number of observation points
depending on the desired density. Using these observation
points, we predict the value at each of the remaining points,

compute the prediction error |Ẑ(s0)− Z(s0)|
Z(s0)

×100% for each

point s0, where Z(s0) and Ẑ(s0) are the true and predicted
values respectively. When comparing various approaches, we
use the same set of observation (and thus, testing) points. For a
given setting, we conduct 20 experiments and plot the median
prediction error Perr value across all experiments and testing
points. The density of observation points is 4 per 100m ×
100m in Figs. 5-7. For each of the data sets, our partitioning
algorithm yielded two partitions closely matching the indoor
and outdoor partitioning of the region. See Fig. 4 for the
variograms of the subregions created. Figs. 3 and 5 plot
median predication errors for varying densities of observation
points and variance of shadowing attenuation, respectively,
across all datasets. In both the plots, we observe that, for
all datasets, the median prediction errors of the techniques
decreases in the following order: IDW, OK, OKD, OKP,
OKDP. In particular, the improvement of OKDP over OK is
significant — reducing the prediction error by one-third to
half. Also, as expected, the prediction error decreases with
increase in the density of observation points and increases
with the increase in the variance. Finally, Figs. 6 and 7 plot
the reduction in % of observation points needed compared
to IDW to achieve at most 5% prediction error, for different
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datasets and variances respectively. We observe the same order
of relative performance of different techniques as above.

IV. OPTIMIZED SELECTION OF SENSORS

During SpecSense operation, there are three main
events: (i) availability (arrival) of new spectrum sensors, (ii)
spectrum-occupancy query requests by user apps, (iii) actually
sensing/measurement of the spectrum signal by some of the
spectrum sensors (when instructed by the system, in response
to the queries [5]). The first two steps are user-driven, while the
third step involves an optimization problem. In particular, we
address the problem of selecting a minimum number of sensors
to report signal at their locations in order to best predict the
values at the given query locations. This saves the battery
power and backhaul communication costs for the sensors that
contribute little to answering spectrum queries. The above
optimization problem may be executed at the arrival of each
new query, or at regular intervals for the set of queries arriving
in the previous interval. In the latter approach, the interval may
depend upon certain factors such as the arrival frequency of
queries, tolerable prediction delay, etc. Our below problem
formulation assumes a set of queries as an input, but can also
be used for a single query. We start with the formulation of the
above sensor selection problem, and then present our proposed
heuristic followed by a performance evaluation.
Selection of Sensors (SOS) Problem: Given a set of sensor
locations S, a set of query location Q, and a constraint m,
the SOS problem is to select a set of at most m sensors
SQ ⊆ S that minimizes the total prediction error (based on

the OK interpolation technique) for the given queries. The
total prediction error for the queries Q from a selected set of
sensors SQ is given by∑

q∈Q
(Z(q)− Ẑ(q|SQ)) (3)

where Z(q) is the true value at location q and Ẑ(q|SQ)
is the predicted value from observations SQ using the OK
interpolation technique.

In general, the above “sensor selection” problem has
been studied before in similar contexts [17], [21]. Most
recently, [35] considers the above problem with the different
objective of minimizing the OK prediction variance, which is
an indirect measure of prediction error; [35] incorrectly claims
that a straightforward greedy approach for the problem will be
approximate.3 Instead, we directly focus on minimizing the
prediction error. In our evaluation (see below), we show that
our proposed heuristic outperforms the greedy heuristic that
targets minimization of prediction variance.

The above SOS problem can be easily shown to be NP-hard
by a reduction from the set cover problem. Thus, we focus
on designing efficient heuristics. We note that the straight-
forward greedy approach that iteratively picks the sensor that
minimizes the total prediction error, is infeasible since the
prediction error can’t be computed due to unknown true values
at the queries. Thus, we instead propose a greedy heuristic
based on “coverage” of queries by sensors.
Proposed Heuristic: Iterative Query Cover (IQC): Our
proposed heuristic, viz., iterative query cover (IQC), is based
on the intuition that the prediction error of a particular query
is minimized by maximizing the number of neighboring ob-
servation points. To define neighbors of a query location, we
assume a given/known “correlation range” r, which defines
the maximum distance of spatial correlation and can be easily
deduced from historical semivariogram curve [24]. Based on
the above intuition, the IQC heuristic works in a sequence of
rounds, wherein in each round it selects sensors to ensure at
least one neighboring sensor for each query. To maximize the
number of neighbors for each query, IQC tries to maximize the
number of rounds by minimizing the number of sensor selected
in each round. More formally, let SQ be the set of sensors
already selected in previous rounds. Then, in the current round,
we essentially run a greedy set cover heuristic to cover all (or
as many as possible) queries in Q using a minimal number of
sensors from S−SQ. The set of sensors selected in this round
are added to the maintained solution set SQ. Then, we go to the
next round. The heuristic stops when |SQ| becomes m (which
could happen in the middle of a round). See Algorithm 1.
Nearest-Query Cover (NQC) Heuristic: For comparison
purposes, we also explore another greedy heuristic NQC —
which is based on the thesis that the prediction error is
minimized by selecting sensors closest to the queries. Like

3Essentially, their claim that the OK prediction variance function is “sub-
modular” is true only in the special case when there are no “suppressor”
variables [17], [21].
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(a) Unweighted Algorithms
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(b) Weighted Algorithms
Fig. 8: Median prediction errors of various heuristics for varying constraint (number of sensors selected per 100m × 100m),
for different datasets.
Algorithm 1 Iterative Query Cover (IQC) Heuristic

1: Input: Set of sensors S, set of queries Q, correlation range
r, and constraint m ≤ |S|

2: Output: Set of selected sensors SQ, |SQ| ≤ m.
3: SQ ← {}, Qr ← Q
4: /* Qr is the set of uncovered queries in the current round

*/
5: while |SQ| < m do
6: for all s ∈ (S − SQ) do
7: Cs ← {q ∈ Qr | ||q − s|| ≤ r}
8: end for
9: s← arg max∀s ∈ (S − SQ) |Cs|

10: SQ ← SQ ∪ {s}
11: Qr ← Qr − {Cs}
12: if Qr = ∅ then /* start a new round */
13: Qr ← Q
14: end if
15: end while
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Fig. 9: Residual battery levels for various heuristics and
datasets, for a fixed constraint of 4 sensors per 100m × 100m.

IQC, the NQC heuristic also executes in rounds. As before, let
SQ be the set of sensors already selected in previous rounds.
Then, in the current round, for each query q (that has a sensor
within r in (S − SQ)), we select the sensor closest to q in
(S−SQ). As before, we update SQ, proceed to the next round,

and continue till |SQ| becomes m.
Weighted SOS Problem: Portable spectrum sensors have
limited energy and it is more desirable to choose those sensors
that have more battery power remaining. We incorporate this
prioritization by assigning weights to the sensors in the SOS
problem, and appropriately generalizing the problem formula-
tion and the heuristics as follows. Using the same notation as
before, the weighted-SOS (WSOS) problem is to find a set of
m sensors |SQ| ⊆ S that minimizes two objectives, viz., the
total prediction error as well as the total cost

∑
s∈SQ

1/b(s) of
the selected sensors where b(s) is the remaining battery level
at a sensor s.4

Our heuristics IQC and NQC heuristics can be easily gen-
eralized to the above weighted SOS problem as follows. For
IQC, the only change is that we replace Line 9 of Algorithm 1
by

s← arg max∀s ∈ (S − SQ) |Cs|b(s).

Similarly, for NQC, within each round, for each query q,
instead of picking the nearest sensor, we pick the sensor s
whose dsq/b(s) is the smallest where dsq is the distance of s
from q.
Performance Comparison: We now evaluate our proposed
heuristics. In addition to the above IQC and NQC heuristics
and their weighted versions, we also consider the Prediction-
Variance Greedy (PVG) heuristic that, in each iteration, selects
the sensor that maximizes the reduction in OK prediction
variance which can be computed from the OK system of
equations [24]. For each experiment, we randomly pick half
of the given points as candidate sensor locations, and choose
a certain number of query points from the remaining points.
We initially assign 100% battery energy to each sensor, and
deduct a small amount (0.5%) of battery energy for each
sensing measurement. For a given constraint m, we run 10,000
experiments and in each experiment, randomly pick 5 to m

4We could have focused on minimizing the linear combination of these
two objectives, but that requires associating arbitrary weights with the two
objectives. An alternate formulation could be to use cost as the constraint,
but that precludes a fair comparison of the weighted and unweighted versions
of the problem.



(randomly picked number) number of queries. Fig. 8 plots
the median prediction errors for various heuristics. We make
two observations: (i) First, IQC outperforms PVG as well as
NQC in weighted as well as unweighted versions. The relative
performance of IQC and NQC confirms the intuition that a
query is better interpolated by more neighboring points in its
range rather than a smaller number of closer neighbors. (ii)
Second, the weighted versions perform only slightly worse
than their unweighted versions. We also compare the distri-
bution of remaining battery levels in the sensors after all the
experiments, for each constraint m. See Fig. 9. We observe
that, as expected, the weighted versions have fewer sensors
with low battery levels than their unweighted versions, which
confirms the effectiveness of weighted heuristics. As before,
IQC outperforms NQC as well as PVG in all settings.

V. SYSTEM LEVEL EVALUATION

We now describe the overall operation of the SpecSense
system, and present key performance results of the end-to-end
system.

A. The SpecSense System

As shown in Fig. 1, the SpecSense system primarily
consists of four high level components: (a) sensing and/or
query clients, (b) central controller, (c) spectrum database, and
(d) analytics framework on top of the database. At this time,
the sensing clients consist of (i) a USB-powered RF sensor
(e.g., RTL-SDR [7], BladeRF [1]) with (ii) an ARM-based
processor board (Raspberry Pi) or smartphone acting as the
host. SpecSense is not tied to these sensors; they are used
for their low cost, low power and off-the-shelf availability.

In response to the spectrum occupancy queries, the central
controller runs the sensor selection algorithm to allocate spec-
trum sensing tasks to individual clients that are registered with
the controller. The clients respond back with the power spectral
density for the requested channel. The controller passes on
such data with time and location stamps to the interpolation
algorithm which generates answers to the spectrum occupancy
queries, communicates them to the query clients and also
stores them in the spectrum database. A web-based dashboard
is also implemented that visually shows channel availability,
query results, and the location/type of sensors on a map.

B. Latency Measurements

We benchmark SpecSense to measure different compo-
nents of latency for spectrum occupancy queries. All measure-
ments are done with a set of WiFi connected Samsung Galaxy
S4 phones and RTL-SDR dongles as the clients sensing the
UHF TVWS bands and the controller, database and analytics
platform running on a server-class computer in the lab. There
are two significant components of the latency – sensing latency
and query latency.
Sensing Latency: We define sensing latency as the total time
elapsed between the controller issuing a scan instruction for a
sensor and the time when the results are available back at the
controller. It involves the communication delay between the
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Fig. 10: Latency benchmarks for the SpecSense system.
SS-128, SS-256 and SS-1024 respectively uses 128, 256 and
1024 point FFT.

controller and the sensor, delay to invoke the driver, gather
the IQ samples from the device, and computational latency to
compute the FFT over the samples. We benchmark the sensing
latency in SpecSense for different FFT sizes. See Fig. 10a.
The latency is ≈ 800ms–2.3 secs, of which communication
latency is in the order of 100s of ms5 and the time required
to fetch the IQ samples from the device are few ms to 10s
of ms. The FFT computation time depends on the FFT size
and is the dominant part of the latency. However, this can be
potentially be outsourced to an FPGA or ASIC on the phone
in future designs to bring it down to negligible levels.
Query Latency: In a dynamic spectrum access scenario, spec-
trum occupancy queries need to be served in semi real-time.
This also implies that both sensor selection and interpolation
algorithms need to be implemented and executed efficiently.

The current deployment spans across our university campus
(≈ 6 sq. km) with ≈10 mobile spectrum sensor nodes. Due to
such limited hardware we moved the sensors across the area to
mimic a huge number of virtual sensors at different locations.
This assumes that the spectrum map does not change over time
which is indeed the case for TV channels we are using as test
cases. In all, we mimic ≈500 virtual sensors in the entire area.

We run spectrum occupancy queries at random locations
within the area. The controller is queried with the coordinates
of a location with no sensor to estimate the power at that
location for a given channel. The involves two steps, viz.,
sensor selection (Section IV) and interpolation (Section III).
Fig. 10b shows that a 50× increase in the number of si-
multaneous queries causes the latency to increase by only
3×, which clearly indicates the scalability of SpecSense.
Second, for a large number of queries, the total computation
time is only within 10s of milliseconds where as the network
latency involving the query client and the controller can be
100s of milliseconds.

Overall, this measurements establish that FFT computation
on the sensor is still the dominant part of the overall end-to-
end latency. Optimizing this to run directly on hardware has

5The amount of data to be communicated is modest and depends on FFT
size. This is roughly in the order of a few 10KBs. Compare this with a sample
Google search that consumes about 40 KB.



the potential of achieving sub-seconds latency for spectrum
occupancy queries in SpecSense.

VI. RELATED WORK

Large-scale spectrum Monitoring: While spectrum monitor-
ing itself is not a new idea and substantial literature exists [4],
[20], [25], [36], they all use lab-grade expensive sensors.
Recent work has also demonstrated spectrum sensing in mo-
bile, low-power commodity platforms [14], [26], [28]. Mobile-
based crowdsourcing applications for spectrum monitoring
have been presented in [9], [31], [32]. While all these ideas
subscribe to the general philosophy of large-scale spectrum
monitoring, they all stop short of building any significant
support infrastructure for enabling apps to use spectrum data.
Radio Environment Mapping: A large number of recent
works [9], [10], [23], [29], [34], [35] have addressed mapping
techniques from sparse sensor measurements (often using Or-
dinary Kriging) using extensive wardriving or crowdsourcing.
It is unclear however a realistic spectrum sensing and query
infrastructure can address the algorithmic/computation issues
used in such techniques, particularly when spectrum queries
need to be served quickly or near realtime. We improve upon
existing interpolation techniques and address scalability issues.

VII. CONCLUSIONS

In this paper, we described SpecSense — an enabling
platform that supports crowdsourced spectrum sensing and
spectrum-aware apps. We specifically concentrated on two
related problems related to efficient answering of spectrum
occupancy queries – effective spatial interpolation of RF
signals and optimized selection of sensors. Our overall results
indicate that in practical deployments, on-demand answering
of spectrum occupancy queries can be effectively done with
only a modest latency overhead.
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