
Demystifying Hardware Bottlenecks in Mobile Web
Quality of Experience

Mallesham Dasari
Stony Brook University

mdasari@cs.stonybrook.edu

Conor Kelton
Stony Brook University

ckelton@cs.stonybrook.edu

Javad Nejati
Stony Brook University

jnejati@cs.stonybrook.edu

Aruna Balasubramanian
Stony Brook University

arunab@cs.stonybrook.edu

Samir R. Das
Stony Brook University
samir@cs.stonybrook.edu

ABSTRACT
Mobile web page load time depends on three key factors: (1) the
complexity of the Webpage, (2) the underlying network conditions,
and (3) the processing capability of the device. While there are
several works focusing on the Web complexity and the network,
there is a little work in understanding the hardware bottlenecks
in the page load process. In this poster, we analyze the effect of
hardware bottlenecks of Web pages. We also analyze the effect of
GPU offloading, a commonly used solution to speed up Web page
loads.

CCS CONCEPTS
•Hardware→Networking hardware; Power and energy; •Net-
works→ World Wide Web (network structure);

KEYWORDS
Web QoE, CPU-GPU, Page Load Time
ACM Reference format:
Mallesham Dasari, Conor Kelton, Javad Nejati, Aruna Balasubramanian,
and Samir R. Das. 2017. Demystifying Hardware Bottlenecks in Mobile Web
Quality of Experience. In Proceedings of SIGCOMM Posters and Demos ’17,
Los Angeles, CA, USA, August 22–24, 2017, 3 pages.
https://doi.org/10.1145/3123878.3131980

1 INTRODUCTION
Typically, mobile web users experience poorer page load perfor-
mance compared to desktop users. Our goal is to determine the
root cause for this poor performance. Figure 1 shows factors influ-
encing the page load at different layers : Application layer (website
complexity, encryption overheads), OS/HW layer (memory and
processing bottlenecks) and Network sub layer (network wide pa-
rameters).

With the increasing speeds of Wi-Fi and Cellular connection,
mobile page loads are no longer bottlenecked by the network alone.
Compute tasks such as parsing (e.g HTML, Javscript), scripting (CSS,
JS), layout, and painting introduces huge computation bottleneck.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5057-0/17/08.
https://doi.org/10.1145/3123878.3131980

Scripting

GPU
CPU

Shared 
Memory

App Layer OS/HW Layer Net Layer

Web page 
complexity

Transport/network/
link/physical

Parsing Layout Painting

Figure 1: Architecture of Page Load Process

This problem is especially important for low-end devices. Over
68% [2] of mobile users from developing regions (specifically India
and African countries) use phones that are not powerful. This moti-
vates us to explore hardware bottlenecks in the page load process as
a reason for poor page performance. Interestingly, we find that hard-
ware bottlenecks exist even for higher-end mobile devices, with
the bottlenecks getting worse as the mobile devices get cheaper.

Prior work has shown that computation is a bottlebeck in mobile
devices [4, 7]. The WProf-M [4] work shows that while desktop
browsers are limited mostly by network, mobile browsers are bot-
tlenecked by compute. The Webcore [7] work optimizes the mobile
hardware architecture to improve PLT and minimize energy con-
sumption. Many mobile browsers (Chrome, Firefox and IE) have
introduced GPU accelerators to speed up web page loads. Given
these related works, our contributions include:

• Fine-grained measurements to study the effect of the under-
lying hardware resources on mobile page load performance.

• Dissecting the page load time into critical stages (loading,
parsing, scripting, layout and painting) and finding critical
blockage points in terms of compute.

• Exploring the use of GPU accelerated compositing (hardware
rendering) over software rendering.

43

https://doi.org/10.1145/3123878.3131980
https://doi.org/10.1145/3123878.3131980


SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA M. Dasari et al.

384 486 594 702 810 918 1026 1134 1242 1350 1458 1512

Clock (Mhz)

4

6

8

10

12

14

16

18

P
ag

e
P

ro
ce

ss
in

g
T

im
e

(S
ec

)

(a)

11.9

26.0

0.50.4

61.2

12.9

27.0

0.40.4

59.2

13.0

29.7

0.50.5

56.2

14.0

28.9

0.50.7

55.9

14.4

31.6

0.50.5

53.0

16.1
31.2

0.50.5

51.8

18.434.3
0.60.6

46.2

Parsing

Scripting

Layout

Painting

Loading

(b)

Figure 2: (a): PPT versus Clock Frequency, (b): Dissection of
PLT into Loading, Parsing, Scripting, Layout, Painting

2 EFFECT OF CLOCK FREQUENCY AND
MEMORY

We first study the effect of the underlying hardware on page load
time (PLT). To this end, we exclude loading time and measure only
Page Processing Time (PPT) at the client, with respect to different
frequency governors and processor clock rate to emulate different
mobile devices.

SetUp: Our experiments were performed on a Google Nexus5
Android phone running the Chrome browser. We load the top 20
most popular pages in Alexa for our experiments. We use chrome
developers tools [3] to trace browser events and calculate start and
end times for all events: parsing, scripting, layout and painting. We
collect hardware resource consumption statistics using Snapdragon
Profiler from Qualcomm [5]. We change CPU clock frequency to
emulate different low-endmobile devices clock using android debug
bridge tool interface on Linux. Typically, android governors control
frequency to dynamically adapt to balance performance and power
consumption. We experiment with different frequency governors
available on the Nexus5 phone. To minimize variances due to Inter-
net delays, we emulate static network conditions using the Linux
Traffic Control tool [1]. Memory is constrained on smartphones,
having 56.7% of the devices less than 1GB of RAM [2]. Hence, to
study the impact of memory, we change memory availability by
creating RAM disks (in steps of 256MB) from available memory
and assign RAM disk to memory intensive workloads to occupy
completely.

Results: We observe a median PPT difference of 10 seconds be-
tween devices with low CPU frequency (384Mhz) and high CPU
frequency (1512Mhz) (Figure 2(a)). This is averaged for four avail-
able governors on Nexus5 (powersave, performance, interactive and
on-demand) over 50 runs. We also find that even at a high frequency,
there is a median 3 second processing delay, which increases to 14
seconds when the CPU frequency is low.

Next, we analyze various components that make up the PLT
including parsing, scripting, rendering, painting and compare it
with the time taken for loading objects (networking). We perform
this study as a function of clock rate. We use the WProf tool [6] to
obtain fine-grained component level breakdown of the PLT on the
critical path.

Figure 2(b) shows that, as the clock frequency increases, the
fraction of time spent on network decreases. When moving from

3.0 3.5 4.0 4.5 5.0

Page Processing Time (Sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Software

Hardware

(a)

1400 1500 1600 1700 1800 1900 2000

Power Consumption (mW)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Software

Hardware

(b)

Figure 3: (a): PPT versus Hw-Sw Rendering, (b): Power Con-
sumption versus Hw-Sw Rendering

the highest to the lowest clock frequency, the fraction of network
loading decreases by a median of 18.6%. For lower frequencies,
scripting (36.1%) and parsing (19.6%) make up a large amount of
the critical path, while layout and painting contribute negligibly
at all frequencies(0.5% each). Furthermore, with better hardware,
the fraction of time spent on scripting and parsing decreases by a
median of 7.8% each.

We find that memory availability is also a critical issue. When
memory is increased from 512MB to 2GB, the PPT measure reduced
by 8 seconds in the median case, which is a reduction of 12.5%.

3 EFFECT OF GPU OFFLOADING
Next we study the effect of offloading browser computation to the
GPU. Due to the highly parallel nature of web content, modern
browsers are leveraging GPUs to improve page load performance by
accelerating composting layers on GPU. Compositing pages on the
GPU especially helps Webpages that are image- and video-heavy.
However, using the power-hungry GPU is a problem for battery life
particularly when using high performance CPU and GPU governors.
We study this trade-off.

We measured page processing time with respect to both software
compositing and hardware-accelerated compositing using GPUs.
We set the CPU clock to 1512Mhz and the GPU clock to 400Mhzwith
interactive frequency governor. Figure 3(a) shows that offloading
compositing to the GPU reduces the PPT by a median value of 0.5
seconds.

We measure power consumption (using Snapdragon Profiler)
during both software and hardware rendering. Figure 3(b) shows
that by using the GPU for rendering, the power consumption in-
creases by 22% for 90% of the time. In other words, even though
the GPU offloading may improve performance significantly, it is
also more power hungry. Our experiments are limited to Chrome
browser.

4 ONGOING AND FUTUREWORK
We are currently working on understanding the effect of hardware
resources on the mobile web page performance. Our end goal is to
identify critical bottlenecks and extraneous components in the page
load process with respect to the hardware. Our work is especially
focussed on addressing the problems in lower-end mobile devices
that are popular in developing regions.

44



Demystifying Hardware Bottlenecks in Mobile Web
Quality of Experience SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA

REFERENCES
[1] Werner Almesberger. 1998. Linux traffic control. Technical Report.
[2] http://hwstats.unity3d.com/mobile/. 2017. (2017).
[3] https://developer.chrome.com/devtools. 2017. (2017).
[4] Javad Nejati and Aruna Balasubramanian. 2016. An in-depth study of mobile

browser performance. In Proc. WWW 2016. 1305–1315.
[5] QualcommDevelopment Network. 2017. developer.qualcomm.com/software/snapdragon-

profiler. (2017).
[6] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David

Wetherall. 2013. Demystifying Page Load Performance with WProf.. In NSDI.
473–485.

[7] Yuhao Zhu and Vijay Janapa Reddi. 2017. Optimizing General-Purpose CPUs
for Energy-Efficient Mobile Web Computing. ACM Transactions on Computer
Systems (TOCS) 35, 1 (2017), 1.

45


	Abstract
	1 Introduction
	2 Effect of clock frequency and memory
	3 Effect of GPU offloading
	4 Ongoing and Future Work
	References

