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Abstract
Quantum computing hardware is improving in robustness, but individual computers still have small
number of qubits (for storing quantum information). Computations needing a large number of
qubits can only be performed by distributing them over a network of smaller quantum computers.
In this paper, we consider the problem of distributing a quantum computation, represented as a
quantum circuit, over a homogeneous network of quantum computers, minimizing the number of
communication operations needed to complete every step of the computation. We propose a two-step
solution: dividing the given circuit’s qubits among the computers in the network, and scheduling
communication operations, called migrations, to share quantum information among the computers
to ensure that every operation can be performed locally. While the first step is an intractable
problem, we present a polynomial-time solution for the second step in a special setting, and a
O(log n)-approximate solution in the general setting. We provide empirical results which show that
our two-step solution outperforms existing heuristic for this problem by a significant margin (up to
90%, in some cases).
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1 Introduction

Motivation and Driving Problem. Over the recent past, there has been a steady increase
in the capacity of quantum computing hardware. A crucial obstacle to achieving the full
potential of quantum computing is the limited number of qubits, which are basic stores of
quantum information, in any single quantum computer (QC). Distributing a large quantum
computation over a network of QCs is a way to overcome this obstacle [7, 5]. Distributing a
computation among a network of QCs will be important to realize the promise and power
of quantum computation. Quantum circuits form a useful abstraction between higher-level
quantum programs written in languages such as Qiskit [14] and Quipper [15], and lower-level
computing hardware. In this paper, we consider the problem of optimally distributing a given
quantum circuit for evaluation over a network of QCs. This distribution involves mapping
the qubits in the circuit to individual QCs such that the communication needed to perform
operations whose operands span different QCs is minimized. The distribution problem is
novel to quantum computing in two important ways:
1. Quantum circuits have an explicit linear structure that makes it possible to determine the

cost of a distribution before the circuit is evaluated. In contrast, classical programs have
conditionals and loops where data dependencies cannot be predicted before execution.

2. Entanglement, which is a phenomenon unique to quantum computing, enables modes of
communication that permit efficient sharing of information between operations.
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41:2 Efficient Distribution of Quantum Circuits

The above differences enable novel solutions to the problem of distributing quantum compu-
tation (see §2 for an elaboration of these key concepts).

Efficient techniques for executing a single operation with operands that span different
QCs in a network have been studied before [11, 18, 19]. More recently, [8] posed the
problem of finding an optimal distribution of a quantum circuit under a naive communication
model in terms of balanced graph partitioning, and solved it using well-known heuristics
for that problem [12]. A formulation with a refined communication model that exploits
quantum entanglement was considered in [3], where the optimization problem was shown
to be intractable and solved using hypergraph partitioning heuristics [1]. A more detailed
comparison with related work is in §2.3.

Our Approach and Contributions. We pose the problem of optimal distribution of quantum
circuit evaluation in two steps (see overview in §3). In the first step, we partition the qubits of
the circuit using ordinary balanced graph partitioning, but with the edge weights determined
by accurately estimating the cost of placing the corresponding qubits in different partitions.
In the second step, we solve the problem of optimal placement of operations for a given
partition. The main contributions of the paper are:

For an appropriately formulated DQC problem of optimizing distributed evaluation of
quantum circuits, we develop an efficient heuristic that outperforms the prior work by a
significant margin (up to 90%) across a wide range of parameters (see §6).
Our algorithm for the DQC problem is a two-step heuristic. For the second step of
covering gates using minimum number of communication primitives, we design an optimal
algorithm for a specialized setting (see §4), and an O(log n)-approximation algorithm for
the general setting (see §5).

We defer the proofs of all lemmas and theorems to Appendix A.

2 Background and Related Works

2.1 Quantum Computation and Communication
This paper’s technical development can be followed with a high-level understanding of three of
quantum computing/communication concepts: the structure of quantum circuits, properties
of certain quantum gates, and characteristics of quantum communication that are directly
used in our development. In the following, we give an overview of these three concepts. For
a more thorough review of this area, the reader is referred to standard sources such as [13].

Quantum Circuits. Quantum computation is typically abstracted as a circuit, where
horizontal “wires” represent qubits which carry quantum data, and operations on the qubits
performed by vertical “gates” connecting the operand wires. Quantum computers (QCs)
evaluate a circuit by applying the gates in the left-to-right order, so this circuit can also be
understood as a sequence of machine-level instructions (gates) over fixed number of data
cells (qubits).

Analogous to classical Boolean circuits, there are several universal gate sets for quantum
computation: any quantum computation can be expressed by a circuit consisting only of
gates from a universal gate set. In particular, a special binary gate called CZ along with the
set of all possible unary gates forms a universal gate set; we make use of this universal gate set
in this paper. Fig. 1 shows the pictorial representation of an example circuit, consisting only
of unary gates (boxes) and CZ gates (vertical connectors). Quantum circuits also comprise
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Figure 1 Running Example Quantum Circuit.

of measurement operations which yield classical bits as results, and conditional operations
that are guarded by classical bit values. For the purposes of this paper, these operations can
be treated as unary operations.

Quantum Communication. If a given quantum circuit is to be evaluated in a distributed
fashion over a network of QCs, we have to first distribute the qubits over the QCs. But such a
distribution may induce gates in the circuit to span different QCs. To execute such non-local
gates, we need to bring all operands’ values into a single QC via quantum communication.
However, physical transmission of arbitrary qubits can incur irreparable communication
errors, as the No Cloning Theorem [17, 9] proscribes making independent copies of arbitrary
qubits. An alternative approach to communicate qubits is via teleportation [4], which requires
an a priori distribution of maximally-entangled pair (MEP) of qubits (e.g., Bell Pair) over
the two nodes. With an MEP distributed over nodes A and B, teleportation of a qubit state
from A to B can be accomplished using classical communication and local gate operations,
while consuming/destroying the MEP.

Creating “Linked Copies” of a Qubit via Cat-Entanglement. Another means of commu-
nicating qubit states is by creating linked copies of a qubit across QCs, via cat-entanglement
operations [11, 19] which, like teleportation, require a Bell Pair to be shared a priori. These
linked copies are particularly useful in efficient distributed evaluation of circuits involving
only CZ and unary gates, as follows. CZ gates have two special properties: (i) we can
freely replace an operand q with a linked copy of q; and (ii) CZ operations commute with
cat-entanglement operation. As a consequence, the linked copies act like shared memories
that continue to remain “in sync” across QCs as long as only CZ operations are executed
on them. Unlike CZ gates, unary gates destroy the cat-entanglements in general.1 Before
applying a unary operation on q, we have to disentangle any linked copies via a dual operation
called cat-disentanglement which doesn’t require a Bell Pair.

2.2 Our Model of Distributed Evaluation of Quantum Circuits
Our model for distributed evaluation of quantum circuits is as follows.
1. Without loss of generality, we assume, that the given (centralized) circuit is composed

only of unary and CZ gates. Circuits using other gate sets can be rewritten to this form,
with only a polynomial expansion in size.

2. We assume that memory for Bell pairs used in cat-entanglement (called ebits) are distinct
from that used for computation qubits, as in prior works [3].

1 An important exception are phase-shift gates which also preserve cat-entanglement.
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41:4 Efficient Distribution of Quantum Circuits

3. Our network model consists of homogeneous set of QCs: the memory capacity for
computation/data qubits is nearly the same in all QCs. Thus, when distributing an input
circuit, we partition the number of qubits almost-uniformly across the given QCs.

4. We consider only a “static” assignment of qubits to QCs, i.e., each qubit has a home
where all the unary operations are performed.

5. Due to the advantages listed in §2.1, we use cat-entanglement as the only mechanism to
communicate qubits.

6. Gates in the given quantum circuit are executed in the order they appear in the circuit:
no further optimizations such as gate reordering are done during distributed evaluation.

Cost Model and Objective. Let us assume that the given (centralized) quantum circuit
is already optimized in the sense that successive gates on different operands are executed
in parallel. For such an optimized circuit, if we disallow any gate reordering optimization
(#6 above), it is easy to see that all distributed evaluation schemes would incur the same
computational cost/time. Thus, our optimization objective in distribution of a given quantum
circuit is to minimize the communication cost, i.e., the number of cat-entanglement operations
needed to evaluate the gates. As mentioned above, cat-entanglements require a priori shared
MEPs, which is an expensive resource – generating them can incur substantial latency due
to the stochastic nature of underlying processes [10, 16]. Note that cat-disentanglement
operations only require local operations and classical communication, and furthermore, only
done following prior cat-entanglements. Hence, their cost can be ignored (or folded into the
cost of cat-entanglements).

2.3 Related Work

The problem of implementing non-local gates in distributed quantum circuits was considered
in [11]. That paper showed necessary and sufficient communications needed to implement
several gates non-locally. In particular, they used the idea of cat-entanglement to share
linked copies across QCs. Such sharing was further explored in [19], which also introduced
the terms “cat-entanglement” and “cat-disentanglement”. The paper generalized sharing
to the multi-partite case, by essentially composing cat-entanglement operations. Both [11]
and [19] focus on optimal implementation of given non-local gates.

In contrast, [8] and [3] focus on optimizing the assignment of qubits to QCs in order to
minimize communication costs. A teleportation-based model is used in [8]: non-local operands
of a gate are teleported to a common QC for the gate operation, and then teleported back
to their original locations. The paper poses the optimization problem in terms of balanced
k-partition of a weighted graph with qubits as vertices. The paper uses the graph partitioning
algorithm of [12] to derive good partitions.

The closest work to ours is that of [3], where cat-entanglement operations are used to
share linked copies of qubits. The optimal assignment problem is posed in terms of balanced
hypergraph partitioning, with hyperedges capturing the set of gates that can be executed
with linked copies. The assignment problem is shown to be intractable via reduction from
the hypergraph balanced k-min-cut problem. In contrast, we have developed a two-step
heuristic, which uses a simpler min-cut problem in the first step and a coverage problem
in the second step that can be solved optimally or near-optimally. We compare our work
empirically with theirs in §6.
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3 DQC Problem Formulation and High-Level Algorithm

In this section, we formally define the problem of efficient distribution of quantum circuits,
and give a high-level description of our proposed algorithm.

Quantum Circuits. We use q1, q2, . . . , qn to denote qubits. Quantum circuits are composed
of gates. Based on §2, we consider the universal gate set with (binary) CZ and unary gates.
Since we only use one type of binary gate and the type of unary gate does not play a role in
our context, we need to only represent the operands of each gate and not the gate itself. We
use the below notion of an abstract quantum circuit that elides the gate information.

▶ Definition 3.1 ((Abstract) Quantum Circuit). Given a set of qubits Q = {q1, q2, . . .}, an
abstract quantum circuit C over Q is a sequence of gates ⟨g1, g2, . . .⟩ where each gk is one of:

(qi, qj): the pair of operands for a CZ gate that occurs as the k-th gate.
qi: the operand of an unary gate that occurs as the k-th gate.

Throughout the article, we thus represent binary gates in a circuit as triplets (qi, qj , t), and
unary gates as pairs (qi, t), where t is the index/timestamp of the gate in the circuit.

3.1 Distributed Quantum Circuit (DQC) Problem
Our goal is to determine an efficient distribution of a given quantum circuit, over a given
network of QCs. Efficient distribution essentially entails two tasks: distributing the qubits
over the distributed QCs, and then executing the gates efficiently over the distributed QCs.
We represent the distribution of qubits over the distributed QCs as a partition of the qubits.
We also define a concept of migrations which represent the cat-entanglement operations; each
migration may facilitate execution of one or more gates, which is captured via a notion of
coverage of gates by migrations.

Informally, the DQC problem is to (i) partition the given circuit across distributed QCs,
and (ii) for the given partition, determine a small set of migrations that are sufficient to
execute/cover all the non-local gates in the circuit. The overall goal of the DQC problem is to
minimize the number of cat-entanglements (or migrations, as we represent them as). Below,
we formalize the notions of partitions, migrations, and execution of gates by migrations (via
a notion of coverage), before defining the DQC problem formally.

Partitioning. Distributing a quantum circuit first entails assigning qubits to quantum
computers in the network. In this paper, we implicitly assume homogeneous quantum
computers, and thus, we consider only near-balanced partitions of the qubits across QCs.

▶ Definition 3.2 (Partition). Given integer k > 0 and real ν > 1, a balanced (k, ν)-partition
of a finite set S divides S into k components i.e., disjoint subsets of S, such that each
component is of size at most ν · |S|

k .
A partition can be represented by a total function π that maps S to a set of labels

P = {p1, p2, . . . , pk}.

For our DQC problem, we consider (k, ν)-balanced partitions of the set of qubits Q using
the set of QCs, P = {p1, p2, . . . , pk}, as the partition labels. Note that such a partition assigns
qubits to QCs. Throughout this paper, we refer to quantum computers pi as partitions, and
π(q) as the home-partition of q. In addition, we refer to a quantum circuit with an already
given partition as a partitioned circuit.
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41:6 Efficient Distribution of Quantum Circuits

Migrations. A migration essentially represents the cat-entanglement operation to create a
linked copy of a qubit in a partition other than its home-partition. We allow migrations of
a qubit qi to occur only initially (i.e., t = 0) or right after a unary operation on qi. This
is without loss of generality, because, since cat-entanglement commutes with CZ , we can
move any migration to the most recent unary operation or t = 0. Also, disentanglement
operations are implicit – done, if needed, immediately before any unary operations, so are
not represented.

▶ Definition 3.3 (Migration). Given a set of qubits Q, abstracted circuit C and partition
P , a migration is a triple (qi, pk, j) where qi ∈ Q, pk ∈ P such that pk ̸= π(qi) (i.e. not the
home-partition of qi), and either j = 0 or (qi, j) ∈ C, i.e., j is the index of an unary gate on
qi in C.

Coverage of Gate by Migration(s). Consider a binary gate (qi, qj , t), where π(qi) ̸= π(qj)
i.e., the operands are in different partitions. We refer to such gates as non-local gates. To
execute such a non-local binary gate, we can: (i) Migrate qi to the home partition of qj , (ii)
Migrate qj to the home partition of qi, or (iii) Migrate both qi and qj to a third partition
where the gate operation can then be performed. In each of the above cases, since unary
gates do not commute with migrations, we need to ensure that there are no unary gate
operations on the migrated qubit between the migration and the binary gate operation being
covered. This notion is formalized below, in terms of coverage of a gate via migrations.

▶ Definition 3.4 (Coverage). For a given partition π, a binary gate (qi, qj , t) can be covered
by a single or a pair of migrations in one of the following ways.
1. By (qi, π(qj), t′), if t′ < t and there are no unary gates on qi between t′ and t; or
2. By (qj , π(qi), t′), if t′ < t and there are no unary gates on qj between t′ and t; or
3. By the pair {(qi, pk, t′), (qj , pk, t′′)}, if t′, t′′ < t and there are no unary gates on qi between

t′ and t and on qj between t′′ and t.
Note that the third condition above allows a gate (qi, qj , t) to be executed at a partition
other than the home-partitions of either of the operand qubits (i.e., by migrating both the
operand qubits to a third partition.

DQC Problem Formulation. Given a quantum circuit, the number k of distributed QCs,
and a partitioning factor ν ≥ 1, the DQC problem is to (k, ν)-partition the qubits into the
distributed QCs and determine the set of migrations that cover the non-local gates of the
partitioned circuit, such that the total number of migrations required is minimized. The DQC
problem is known to be NP-hard by a reduction from the hypergraph min-cut problem [3].

DQC Example. Consider the running example of our quantum circuit from Fig. 1.
Fig. 2a shows the distribution of qubits into three partitions: p1 = {q1}, p2 = {q2, q3}
and p3 = {q4, q5}. The non-local binary gates are represented by red vertical lines,
and the local ones by green lines. Let ti(i ≥ 1) be the timestamp associated with
the i-th unary gate. The set of all possible migrations for this partitioned circuit
is: {(q1, p2, 0), (q1, p3, 0), (q2, p1, 0), (q2, p3, 0), (q3, p1, 0), (q3, p3, 0), (q4, p1, 0), (q4, p2, 0),
(q5, p1, 0), (q5, p2, 0), (q1, p2, t1), (q1, p3, t1), (q3, p1, t2), (q3, p3, t2), (q2, p1, t3), (q2, p3, t3),
(q5, p1, t4), (q5, p2, t4)}. A example of a set of migrations that can cover all the non-local
gates is: {(q1, p2, 0), (q4, p2, 0), (q5, p2, 0), (q1, p2, t1), (q5, p2, t4)}. This set of migrations
execute all the non-local gates in partition p2.
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(a) Partitioning of our running example quantum
circuit; the three partitions are shown by yellow
boxes.

(i) (ii)

(b) Edge weights on the graph used for partitioning
the running example. (i) Simple weights based on
the total number of binary gates between the qubits,
and (ii) Refined edge weights based on the optimal
MS-HC algorithm in §4.

Figure 2 Partitioning and Edge Weights, on the running example.

3.2 Two-Step DQC Algorithm

In a recent work, Martinez and Heunen [3] reduce the DQC problem to a balanced k-min-cut
of an appropriate hypergraph, and thus, use a hypergraph-partitioning heuristic to solve the
problem. Here, we propose a use natural two-step procedure – in effect, reducing the DQC
problem to a sequence of two simpler problems; in fact, we show that the second step can be
solved near-optimally and even optimally in a special setting. In particular, our proposed
algorithm consists of the following two steps: (i) First, we compute a “good” (k, ν)-partition
of the qubits for distribution over the k QCs; (ii) Then, we determine a minimal set of
migrations required to cover all the non-local gates of the partitioned circuit.

Step 1: Partitioning Qubits into QCs/Partitions. To compute a partition that will intuit-
ively yield a small set of migrations in the second step, we compute the partitioning of
the qubits by solving a balanced k-min-cut problem over an edge-weighted graph over
qubits as vertices. In particular, given a circuit C, we define a weighted graph G = (V, E)
where V is the set of qubits in C and E = {(qi, qj)|(qi, qj , t) ∈ C}. The weight on each
edge intuitively represents the cost of keeping the qubits in different partitions; at its
simplest, the weight of an edge (qi, qj) can be the number of binary gates of the type
(qi, qj , _) in C for some t. A more refined weight function is defined at the end of this
section.
In essence, in the first step, we partition the qubits by computing a balanced min-k-cut
of the of the above weighted graph. The balanced min-k-cut problem is NP-hard even for
k = 2, with no known approximation algorithms. Therefore, we consider an approximate
version of the problem, viz., (k, ν)-balanced graph partitioning for ν > 1 as defined in
Def. 3.2. There are several works that address the (k, ν)-balanced min-cut problem.
Notably, [2] gives a O(log2 n)-approximation algorithm for ν = 1 + ϵ (ϵ is arbitrarily
small) when k is a constant. In our evaluation, we use a third-party graph partitioning
algorithm called KaHyPar [1].

Step 2: Selecting Migrations. Given a partitioned circuit, we then find the smallest set
of migrations that cover all the non-local gates. This minimization problem can be
solved optimally in polynomial time when restrict each gate to be executed only in
the home-partition of one of its operands (§ 4). For the general case, we provide an
O(log N)-approximation algorithm (where N is the number of binary/CZ gates in the
circuit C).
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41:8 Efficient Distribution of Quantum Circuits

Refined Weight Function in Step 1. The total number of CZ gates between two qubits
qi and qj , originally proposed as the weights of edges in Step 1 above, is actually just an
upper bound on the number of migrations needed to cover those gates. A more accurate cost
will be the actual/optimal number of migrations needed to cover (qi, qj , _) gates if qi and qj

were in separate partitions. We use the above intuition to construct an induced circuit C ′
(i,j)

consisting only of gates on qi and qj . We distribute C ′
(i,j) such that the two qubits qi and qj

are in different partitions and compute the minimum number of migrations needed to cover
all the binary gates in C ′

(i,j). The minimum number of migrations in C ′
(i,j) can be computed

using the optimal MS-HC algorithm described in §4, and we use this minimum value as the
weight on the edge (qi, qj) of the weighted graph used in Step 1. See Fig. 2b.

4 Optimal Selection of Migrations under Home-Coverage

In this section, given a quantum circuit and a partitioning of its qubits to computers/partitions,
we design an efficient algorithm to compute the optimal set of migrations needed to execute
the partitioned circuit. The algorithm developed in this section is used as a subroutine in
the Two-Step DQC Algorithm presented in §3.

Here, we will assume that a gate can only be executed at the home-partition of one of
its operand-qubits; this restriction helps minimize execution memory needed at individual
partitions, and in addition, simplifies the migration-selection problem sufficiently that we
can design an optimal algorithm for the problem of selection of migrations to cover all gates.
We will relax this assumption in the next section where we describe an algorithm for the
migration-selection problem in the more general setting.

We start with formally incorporating the above assumption in our problem formulation
by restricting the original definition (Def. 3.4) of coverage of gates by migrations.

Home Coverage of Gates by Migrations. Given a quantum circuit, recall the definition
(Def. 3.4) of coverage of gates by migrations, for a given partition π. Therein, we defined
that a gate can be covered by migration(s) in many ways. To impose the condition that each
gate be executed only at a home-partition of its operand qubits, we restrict the definition of
coverage by allowing a migration to cover a gate only if it migrates one of the operand qubits
to the home-partition of the other qubits. We define the notion of home-coverage below.

▶ Definition 4.1 (Home-Coverage). For a given partition π, a binary gate gate (qi, qj , t) can
be home-covered by a migration in one of the following ways.
1. By (qi, π(qj), t′), if t′ < t and there are no unary gates on qi between t′ and t; or
2. By (qj , π(qi), t′), if t′ < t and there are no unary gates on qj between t′ and t.

Memory Conservation by Home-Coverage. Restricting execution of gates at home par-
titions of its operands is one way to implicitly minimize/constrain the size of execution
memory needed. For example, consider a circuit with n qubits {q1, q2, . . . , qm} , no unary
gates, and n− 1 binary CZ-gates of the type (qi, qi+1, ti) for some ti’s. Suppose that each
qubit is distributed to a different partition. In this case, a potential set of migrations to
cover the gates could be to migrate all qubits to a single partition and execute all the gates
there. However, this would require n− 1 units of additional memory to hold all the migrated
qubits. In contrast, the alternate solution restricted by home-coverage would migrate qubit
qi to π(qi+1) for each i, requiring only one additional memory at each partition. In addition,
as mentioned above, restricting the coverage of gates to home-coverage allows design of an
optimal algorithm for selection of migrations, and thus, an efficient overall solution for the
DQC problem as observed in our evaluations.
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Figure 3 Illustrating the MS-HC Problem. The set of gates (straight vertical lines) covered by a
migration (squiggly lines) m are shown in the same color as m. E.g., gates D, E and H are covered
by the migration (q1, p2, t1).

MS-HC Problem. Migration Selection under Home-Coverage. Given a quantum circuit C

and a partitioning of C’s qubits to given partitions/QCs, the MS-HC problem is to determine
the smallest set of migrations that can execute the gates of the partitioned circuit in the
home partitions of one of its operands. More formally, let Q be the set of qubits in a given
circuit C, P be the set of given partitions, π be the partitioning function, and M be the set
of all potential migrations (as per Def. 3.3). The MS-HC problem is to select a smallest set of
migrations M such that each gate in C is home-covered by some migration in M .

We start with illustrating the MS-HC problem via an example. Then, we design an optimal
algorithm for the MS-HC problem. Recall our running example of a quantum circuit from
Example 2a. As shown in Fig. 3, one solution to the MS-HC problem for the given partition
of the qubits is {(q1, p2, 0), (q4, p2, 0), (q1, p2, t1), (q1, p3, t1), (q3, p3, t2)}, where as before ti is
the timestamp of the i-th unary gate. This solution can be easily verified as optimal.

4.1 Optimal MDS-HC Algorithm
We start with a high-level description and intuition of the proposed optimal algorithm,
followed by the proofs of two key claims needed to design the algorithm.

High-level. The MS-HC problem can be easily formulated as the well-known set-cover
problem. However, MS-HC is in fact a very special case of the set-cover, allowing us to
design a polynomial-time optimal algorithm. In particular, first, we show that each gate
(element) is home-covered by exactly two migrations (sets), and thus the MS-HC problem can
be formulated as a vertex-cover problem in an appropriate graph GHC , where migrations
are represented as nodes and gates as edges. Second, we show that the graph GHC is actually
a bipartite graph, by showing that it has no odd length cycles. Thus, the MS-HC problem
reduces to the vertex-cover problem in the bipartite graph GHC , and thus, solvable optimally
in polynomial time.

Each Gate is Home-Covered by Two Migrations. Recall from Def. 3.3 that a migration is
a triplet (q, P, t), where the qubit q is being migrated to partition P at time t, and we only
allow migrations with a timestamp t of either 0 or corresponding to some unary gate on qubit
q. The below lemma shows that each gate is home-covered by exactly two such migrations.

DISC 2021



41:10 Efficient Distribution of Quantum Circuits

▶ Lemma 4.2. For a given partitioned quantum circuit, a binary gate in the circuit is
home-covered by exactly two migrations.

It is easy to see that the above lemma holds for the partitioned circuit of our running
example. See Figure 5 in Appendix A.

Bipartite Graph over Migrations. Based on the intuition from Fig. 5, we can construct a
graph GHC(V = M, E = T ) where T is the set of all non-local gates (i.e., gates with different
home-partitions of the operands) in the given partitioned circuit and M is the set of all
migrations as per Def. 3.3 (i.e., with a timestamp of 0 or a unary gate on the migrated qubit).
More formally, an edge/migration (qi, qj , t) connects the unique vertices (qi, π(qj), ti) and
(qj , π(qi), tj) where ti and tj are as defined in Lemma 4.2. Based on this graph representation
of home-coverage of gates by migrations, we can solve the MS-HC problem by computing the
optimal vertex-cover of edges in GHC , since a vertex cover of GHC corresponds exactly to a
set of migrations that home-cover all the given gates. Below, we prove that, the GHC graph
is actually a bipartite graph – which allows us to compute the optimal vertex-cover of GHC

in polynomial time.

▶ Lemma 4.3. For a given partitioned circuit, we claim that the GHC graph, as defined
above, has no odd-length cycles, and is thus a bipartite graph.

Optimal Algorithm for MS-HC. Based on the above two lemmas, we can now solve the
MS-HC problem by computing an optimal vertex cover of the bipartite graph GHC for a given
partitioned circuit. The pseudo-code of the overall algorithm is given in Appendix A.4.

▶ Theorem 4.4. Given a partitioned quantum circuit, Algorithm 2 returns an optimal set of
migrations that home-cover all the non-local gates of the given partitioned circuit.

5 Near-Optimal Selection of Migrations under General Coverage

In this section, we relax the assumption made in the previous section, i.e., allow execution of
non-local gates of a partitioned circuit in partitions different from any of the home-partitions
of its operands. We do this by using the original notion of coverage defined in Def. 3.4, where
a non-local gate may also be executed by migrating both of its operand qubits to a third
partition. In such a general setting, for a given partitioned circuit, we consider the problem
of selecting a minimum number of migrations to cover all non-local gates, and present a
polynomial-time approximation algorithm.

MS-GC Problem: Selection of Migrations to Cover Gates. Given a partitioned quantum
circuit, the MS-GC problem is to determine a set a migrations of minimum size that covers all
the non-local binary gates of the given partitioned circuit.

The above MS-GC problem generalizes the set-cover problem in some sense, as it allows
an element to be covered by a pair of sets (i.e., an element is covered only if both the sets
are selected). However, the MS-GC problem also has a special structure, which makes proving
its intractability non-trivial; however, we conjecture the MS-GC problem to be NP-hard. In
either case, since the objective function is not submodular, the simple greedy algorithm that
iteratively selects the migration with most “benefit” does not offer a performance guarantee.
Below, we will design a polynomial-time approximation algorithm for the MS-GC problem.
We start with a definition.
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▶ Definition 5.1 (Same-Partition Set (of Migrations)). A set of migrations M is called a
same-partition set if for every pair of migrations (q1, p1, t1) and (q2, p2, t2) in M , we have
p1 = p2.

5.1 Algorithm G*: Approximation Algorithm for the MS-GC Problem
Our proposed algorithm G∗ is a greedy algorithm that picks, at each iteration, a same-
partition set of migrations with highest benefit-density (as defined below), until all the
non-local gates of the given partitioned circuit are covered by the picked set of migrations.
Note that, at each stage, the G∗ algorithm may pick more than one migration. We will later
develop a procedure (Algorithm 1) to select a same-partition set with highest benefit-density,
which form a single iteration of the G∗ algorithm. Below, we first show that G∗ will deliver
an O(log N)-approximate solution to the MS-GC problem, where N is the total number of
non-local gates in the given partitioned circuit. We now define the notion of benefit and
benefit-density of a set of migrations.

▶ Definition 5.2 (Benefit; Benefit-Density). Consider a stage/iteration in the G∗ algorithm,
where a set of migrations have already been selected. For a set X of migrations, we define its
benefit B(X) as the number of (non-local) gates covered by X that have not been covered yet
by the set of migrations already selected in previous iterations. We define the benefit-density
of X as B(X)/|X|).

▶ Theorem 5.3. For the MS-GC problem, the G∗ algorithm delivers a solution with at most
|O| ln N number of migrations, where O is the optimal solution and N is the total number of
non-local gates in the given partitioned circuit.

5.2 Dividing a Set into Same-Partition Subsets
We now show that a set of migrations can be divided into a disjoint collection of same-
partition subsets such that the benefit of the original set is at most the summation of the
benefit of the subsets. We start with a formal definition and on observation.

▶ Definition 5.4 (Benefit Graph). The benefit-graph, denoted by BM (V, E), for a set of
migrations M at a certain stage of G∗ is defined as follows. The set of vertices V (BM ) is
the set of migrations in M , and each node/migration m in V (BM ) is assigned a node-weight
of B(m). Consider a pair of migrations m1, m2 in M . The pair of vertices (m1, m2) are
connected by an edge in BM if and only if B({m1, m2}) is non-zero, in which case we also
assign a weight of B({m1, m2}) to the edge (m1, m2).

▶ Lemma 5.5. At any stage of the G∗ algorithm, a set O of migrations can be divided into
disjoint subsets O1, O2, . . . , Ol such that B(O) ≤

∑l
i=1 B(Oi).

5.3 G* Iteration: Selecting an Optimal Same-Partition Set
We now design an algorithm to select the same-partition set of migrations with highest
benefit-density, at a given stage/iteration of the G∗ algorithm. Let us consider a stage of the
G∗ algorithm where a set of migrations have already been selected. Our goal is to pick a
set M of same-partition migrations from the remaining migrations such that B(M)/|M| is
maximized, where B(M) is the benefit of M at the given stage of the G∗ algorithm. Our
overall algorithm of selecting an optimal M consists of the following steps.
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1. For each given partition pi, let Mi be the set of remaining (i.e., not yet selected by
G∗) migrations that migrate a qubit to pi. Note that each Mi is a maximal set of
same-partition migrations.

2. For each Mi, we find a set Mi ⊆Mi with highest benefit-density, as described later.
3. From the above Mi’s, We pick the Mi with highest B(Mi)/|Mi| as the optimal M.
It is easy to see that the above returns an optimal same-partition set of migrations, as any
same-partition set of migrations must be a subset of Mi for some i.

Selecting a Subset of Mi with Highest Benefit-Density. We now discuss how to select
an optimal subset within a given Mi . We start with a lemma, which will help reduce the
problem to that of selecting an optimal induced subgraph in the benefit graph of Mi.

▶ Lemma 5.6. Let M be a same-partition set of migrations. Then, B(M) =
∑

m∈M B({m})+∑
m1,m2∈M B({m1, m2}).

The above lemma implies that finding the best subset within a given Mi is equivalent to
finding an induced subgraph H in the benefit-graph of Mi that has the highest density of
weight, i.e., maximum value of (

∑
e∈E(H) w(e) +

∑
v∈V (H) w(v))/|V (H)|. This is a weighted

generalization of the well-studied densest subgraph problem which can be solved optimally in
polynomial time. We discuss this below.

Weighted Densest Subgraph Problem. Given an unweighted graph G, the densest subgraph
problem is to select an induced subgraph H in G such that |E(H)|/|V (H)| is maximized.
This problem can be solved optimally in polynomial time [6]. We are interested in the
weighted generalization of this problem referred to as the weighted densest subgraph problem,
wherein vertices and edges have (positive) weights associated, and the goal is to select an
induced subgraph H with maximum (

∑
e∈E(H) w(e) +

∑
v∈V (H) w(v))/|V (H)|. The simple

LP-based optimal algorithm as well as the more time-efficient 2-approximation algorithm for
the unweighted version given in [6] can be both easily generalized to our weighted version
of the problem. We briefly give both the algorithms, and defer the performance guarantee
proofs (as they are simple generalizations of the proofs for the unweighted case in [6]).

LP-based Optimal Algorithm. The weighted densest subgraph problem can be easily
represented as an ILP; the corresponding LP is as follows. Here, wi is the weight of vertex i,
and wij is the weight of edge (i, j) in the given graph.

Maximize
∑

i

yiwi +
∑

ij

xijwij

Subject to: (i) 0 ≤ yi, xij ≤ 1; (ii) xij ≤ yi; (iii)
∑

i

yi ≤ 1; (iv) xij ≤ yj .

The optimal solution is obtained by: (i) Solving the above fractional LP; let the solution be
{yi, xij }. (ii) Picking a threshold τ appropriately and setting yi = ⌊yi/τ⌋. In (ii), we pick a
threshold the LP objective; we do so by exhaustively trying all yi values as the threshold. It
can be shown by a simple generalization of the proof for the unweighted version [6] that the
above process returns an optimal solution for the weighted densest problem.

2-Approximate Greedy Algorithm. A simple greedy algorithm to solve the weighted densest
subgraph problem is to iteratively remove a vertex with the lowest sum of node weight and
weight of incident edges, keep track of the resulting n subgraphs over n interations, and
picking the best among them. This greedy algorithm can be easily shown to be 2-approximate,
by a simple generalization of the proof for the unweighted version [6].
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Overall G* Iteration. Algorithm 1 gives the pseudo-code of the overall algorithm for a
single G∗ iteration, which selects the same-partition set with highest benefit-density.

Algorithm 1 Single Iteration of G∗ Algorithm.

Input: The set of remaining migrations M , at a certain stage of G∗ Algorithm.
Output: A set of same-partition migrations M in M , with the highest benefit-density.

1: Let M1, M2, . . . , Mk be the disjoint and maximal same-partition subsets of M corres-
ponding to each of the partitions p1, p2, . . . , pk.
/* For each Mi, find a subset of Mi with highest benefit-density */.

2: for all i ≤ k do
3: Construct the benefit-graph B(Mi) of Mi.
4: Find the weighted densest subgraph Hi in B(Mi).
5: Mi ← Vertices in Hi

6: end for
7: M← The Mi with highest benefit-density.

8: return M.

6 Evaluation

We now evaluate our algorithms empirically over random quantum circuits. The goal of our
empirical study is to evaluate the performance of proposed techniques in terms of number of
migrations incurred, i.e., the number of cat-entanglements, and compare them with the prior
approach from [3].

Algorithms Compared. We compare our techniques with the algorithm proposed in [3],
which is based on computing a min-cut in an appropriate hypergraph; we refer to this
algorithm as Martinez-19. Our algorithms are all based on the Two-Step Algorithm of §3,
with just different subroutines (from §4-5) for the second step. For the first-step of partitioning
the qubits using a simple weighted graph, we use a third-party solver KaHyPar [1] and the
refined weighted scheme discussed in §4. For the second-step, we use three different schemes
and refer to the overall DQC algorithms as follows: (i) Home-Cover algorithm uses Algorithm 2
in the second step, (ii) G∗_LP, G∗_Approx, G∗_Simple algorithms use Algorithm G∗ in
the second step, with the LP-based, 2-approximation greedy, and simple greedy algorithms
respectively for solving the weighted densest subgraph problem. The simple greedy algorithm
to compute the weighted densest subgraph simply removes one vertex at a time to improve
the weighted-density of the remaining graph, and stops when the remaining graph’s weighted
density can’t be improved by removing any vertex. All our algorithms use the refined weights
described in §3.2; usage of refined weights yielded a performance advantage of around 6%
compared to using the simple weights.

Random Circuit Inputs and Parameter Values. We run our simulations over randomly
generate quantum circuits. To generate quantum circuit instances, we vary the following
parameters: number of qubits, total number of gates per qubit, fraction of gates that are
binary (CZ) gates, and number of given partitions. We use an imbalance-factor ν of 1.1 for
all the experiments. In the below plots, we vary one of the parameters and fix the remaining
three to their default values. The default value for number of qubits is 50, total number of
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gates per qubit is 50, and number of partitions is 10. For the fraction of binary gates, we use
two default values: 50% and 80%, as this parameter has a strong impact on performance of
algorithms and in practice, the fraction of binary gates can be high.2 Each data point in the
below experiments is obtained from an average of 5 different random instances.

Evaluation Results for Varying Parameters. We present our results in Figures 4b-4f.
In general, we observe that all the three G∗-based algorithms performing similarly and
significantly outperforming the Martinez-19, across all our experiments. In particular,
the G∗-based algorithms perform up to 90% better (i.e., incurring merely 20% of the
migrations/cat-entanglements used by Martinez-19; see Fig. 4a). The Home-Cover algorithm,
which implicitly conserves execution memory usage at any single partition, also performs
up to 80% better than Martinez-19. Among the G∗-based algorithms, surprisingly the
G∗_Simple performs slightly better than the other two; note that, this does not contradict
the optimality of LP-based algorithm for the densest weighted subgraph, since densest
weighted subgraph solution is only used within an iteration of the G∗ algorithm.

Figure 4a plots results for varying fraction of binary (CZ) gates in the circuit. We observe
that the performance of all our algorithms, unlike Martinez-19, improves significantly with
increasing fraction of binary gates; this can be attributed to the fact that higher fraction
increases the number of gates covered by a single migration, and our algorithms are able to
take better advantage of it. Figures 4b and 4c show the performance of various algorithms
for increasing number of qubits, with 50% and 80% CZ gates respectively, while using
default values for other parameters. The performance of our algorithms in comparison to
Martinez-19 improves with increasing number of qubits. Figures 4d and 4e plot results
for varying number of partitions. Here, we observe that performance of Home-Cover wrt
G∗-based algorithms worsens with increase in partitions; this may be due to the fact that
Home-Cover’s restriction of home-partition execution becomes more pronounced with increase
in number of partitions. Finally, Figures 4f and 4g plot the performance of algorithms for
varying number of gates per qubit. We discuss execution memory usage in Appendix A.8.

7 Conclusions

In this paper we considered the problem to distribute a quantum circuit over a network of
QCs, such that the communication cost minimized. We presented a two-step heuristic that
outperforms prior techniques. In future work, we plan to look at various generalizations of the
problem, e.g., for nodes with non-uniform capacities, links with non-uniform communication
costs, constraining the execution memory at each partition, allowing multiple modes of
communications (e.g., teleportation as well as cat-entanglement), allowing for unary gates
to be executed at any partition (i.e., allowing for dynamic home-partition of a qubit). In
addition, we plan to investigate better heuristics for the first step of our algorithm.

2 E.g., the Quantum Fourier Transform (QFT) circuit has has O(n2) controlled-phase gates and O(n)
other gates; since the controlled-phase gates can be treated like CZ gates, the fraction of binary gates in
a QFT circuit can be arbitrarily high. Also, when we convert binary gates in an arbitrary circuit to CZ
gates, the fraction of binary gates is expected to be 50% as a binary gate yields a CZ gates flanked by
unary gates (and long runs of unary gates can be considered as a single unary gate, in our context).
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(a) Number of migrations used for various random circuits with varying fraction of binary gates.

(b) Varying number of qubits, for Frac-CZ=0.5. (c) Varying number of qubits, for Frac-CZ=0.8.

(d) Varying number of partitions, for Frac-CZ=0.5. (e) Varying number of partitions, for Frac-CZ=0.8.

(f) Varying gate ratio, for Frac-CZ=0.5. (g) Varying gate ratio, for Frac-CZ=0.8.

Figure 4 Performance of various algorithms for varying fraction of CZ gates ((a)), varying number
of qubits ((b)–(c)), varying number of partitions ((d)–(e)), and varying number of gates per qubit
((f)–(g)). Above, Frac-CZ (fraction of CZ gates) is 0.5 in (b), (d), and (f), and is 0.8 in (c), (e),
and (g).
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A Appendix A

A.1 Illustrating Lemma 4.2 over Running Example

See Figure 5.

Figure 5 The GHC graph connecting migrations with the home-covered binary gates, for the
partitioned circuit of the running example. Here, each binary gate is represented by an edge that
connects the two migrations (represented as triplets) that home-cover it.

A.2 Proof of Lemma 4.2

Proof. Consider a arbitrary binary gate g = (qi, qj , t). Let ti (tj) be timestamp of the
last unary gate on qi (qj) before t or 0 if there is no unary gate on qi (qj) before t. Then,
its easy to see by Def. 4.1 that the only migrations that home-cover g are (qi, π(qj), ti) or
(qj , π(qi), tj). ◀

A.3 Proof of Lemma 4.3

Proof. Consider a cycle of length n in GHC , and let the ithvertex in the cycle be the migration
(qi, pi, ti) for 0 ≤ i ≤ n − 1. We claim that π(qi) = π(q(i+2) mod n) for 0 ≤ i ≤ n − 1.
Consider the sequence of vertices (qi, pi, ti), (q(i+1) mod n, p(i+1) mod n, t(i+1) mod n), and
(q(i+2) mod n, p(i+2) mod n, t(i+2) mod n). Since (q(i+1) mod n, p(i+1) mod n, t(i+1) mod n) is
connected to both the other vertices, we have that p(i+1) mod n = π(qi) and p(i+1) mod n =
π(q(i+2) mod n) which implies that π(qi) = π(q(i+2) mod n). The above implies that for an
odd-length cycle, we’ll get pi = π(qi) = p for all i and some particular partition p, which is
impossible for a migration/vertex (see Def. 3.3). ◀
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A.4 Optimal MS-HC Algorithm Psuedo-Code

Algorithm 2

Input: A partitioned quantum circuit. Let T be the set of non-local gates.
Output: An optimal set of migrations that home-covers all the non-local gates T .

1: M ← ∅
2: for all g ∈ T do
3: M ←M

⋃
{migrations that home-cover g}.

4: end for
5: Construct the bipartite graph GHC over T and M .
6: M∗ = MinVC(GHC).
7: return M∗.

A.5 Proof of Theorem 5.3
Proof. LetM1,M2, . . . ,Mk be the sets of migrations picked by the Greedy Algorithm over
k iterations. Let ai is the number of gates covered by Mi, that weren’t previous covered by
M1 to Mi sets. Thus, the overall greedy solution covers (a1 + a2 . . . + ak) gates, which is
equal to N , the total number of gates in the circuit (as the greedy algorithm only terminates
when all the gates have been covered). Let be optimal solution be O; here, O is a set of
migrations that cover all the N gates in the circuit.

Consider a stage when the Greedy Algorithm has already selected M1,M2, . . . ,Mi−1
sets of migrations. We can observe the following.

The total number of gates already covered by the greedy sets M1 to Mi−1 is
∑i−1

j=1 aj .
Thus, the number of gates covered by the optimal solution that have not been yet covered
by the greedy setsM1 toMi−1 is at least N −

∑i−1
j=1 aj . This follows from “monotonicity”

of the coverage function; in particular, from the fact that the M1 to Mi−1 sets and the
optimal solution together still cover N gates.
By Lemma 5.5, the optimal set O can be divided into disjoint same-partition subsets of
migrations O1, O2, . . . , Om such that B(O) ≤

∑i=m
i=1 B(Om) where B(X) is the benefit

of set X at this stage.
By pigeon hole principle and above, there exists a same-partition set Ol of migrations
such that B(Ol) at this stage is at least

|Ol|(N −
i−1∑
j=1

aj)/|O|.

Since the next setMi picked by the Greedy Algorithm is a same-partition set of migrations
with the highest benefit-density, i.e., one that covers the most number of uncovered (by
M1 to Mi−1) gates per unit migration, the number of new gates covered by Mi is at
least |Mi|(N −

∑i−1
j=1 aj)/|O|. Thus, we have

ai ≥ |Mi|(N −
i−1∑
j=1

aj)/|O|.

Now, using the above equation, it is easy to show by induction that (N −
∑i

j=1 aj) ≤
N(1−1/|O|)i′ , where i′ =

∑i
j=1 |Mj |, the total number of migrations in the Greedy solution

till the ithstage. Thus, when i′ = |O| ln N , we get (N −
∑i

j=1 aj) (the number of uncovered
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elements) as less than 1, which is when the Greedy Algorithm stops (after one more step).
Thus, the number of migrations selected by the Greedy solution is we |O| ln N , showing that
the Greedy Algorithm is (ln N)-factor approximation algorithm, where N is the total number
of gates in the circuit. ◀

A.6 Proof of Lemma 5.5
Proof. Let O be the optimal solution of the given instance of the MS-GC problem. Let BO

be the benefit-graph of O. We make the following two claims. First, we claim that each
connected component in the benefit graph BO is a same-partition set. This claim follows
from the observation that if two nodes are connected by a path in the benefit graph BO, then
the corresponding migrations migrate the appropriate qubits to the same partition. Recall
that B({m1, m2}) is non-zero if and only if m1 and m2 are migrating the corresponding
qubits to the same partition. Second, let BO1, BO2, . . . , BOl be the l connected components
of BO, with O1 to Ol denoting the subsets of migrations corresponding to the connected
components. We claim that B(O) ≤

∑l
i=1 B(Oi). This follows3 from the following facts: (i)

Each Oi is a same-partition set of migrations (from the first claim above), and (ii) If a gate
g is covered by migrations in O, then it is covered by a single or a pair of migrations in some
Oi.4 Thus, the lemma follows. ◀

A.7 Proof of Lemma 5.6
Proof. This follows from the fact that if a non-local gate g is covered by some migration(s)
in M , then only one of the following is true: (i) there is a unique migration m ∈ M that
covers g, or (ii) there is a unique pair of migrations {m1, m2} that together cover g. ◀

A.8 Evaluating Execution Memory vs. Communication Trade-off

Figure 6 Maximum ebit memory required in a single partition for varying number of gates per
qubit.

3 We note that, in general, B(O) may not be equal to
∑l

i=1 B(Oi), since a gate may be independently
covered by multiple (individual or pairs of) migrations across different Oi’s.

4 Note that a gate g is never covered by a pair of migrations together that lie in different Oi’s.
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Recall that our Home-Cover algorithm restricts execution of binary gates to the home-
partition of one of the operands, to intuitively minimize the execution memory (i.e., maximum
number of linked copies migrated from other partitions, at any instant) usage in any
partition. To verify this intuition, we plot in Fig. 6, the maximum execution memory
usage across partitions, and observe a modest difference in the usage of execution memories
between Home-Cover and G∗_Simple algorithms but a higher usage in other G∗-based
algorithms. Also, observe that the memory usage of Martinez-19 is slightly higher than
that of G∗_Simple.
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