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ABSTRACT
We present the vision of BARNET (Backscattering Activity
Recognition NEtwork of Tags), a network of passive RF tags
that use RF backscatter for tag-to-tag communication. BAR-
NET not only provides identification of tagged objects but also
can serve as a ‘device-free’ activity recognition system. BAR-
NET’s key innovation is the concept of backscatter channel
state information (BCSI) which can be measured via system-
atic multiphase probing of the backscatter tag-to-tag channel
using innovative processing on the passive tags. So far such
measurements were only possible using active radio receivers
that consume much higher power. Changes in BCSI provide
signatures for different activities in the environment that can
be learned using suitable machine learning tools. We develop
the BARNET tag architecture which shows that an ASIC im-
plementation can run on harvested RF power. We develop a
printed circuit board (PCB) prototype using discrete compo-
nents to evaluate activity recognition performance. We show
that the prototype can recognize human daily activities with
an average error around 6%. Overall, BARNET uses passive
tags to achieve the same level of performance as systems that
use powered, active radios.

CCS CONCEPTS
•Computer systems organization→ Sensor networks ;
•Hardware→ Networking hardware; Wireless devices;

1 INTRODUCTION
We imagine a future where our physical environment is cyber-
enabled in its finest detail. Most, if not all, physical objects are
tagged for identification and tracking. Moreover, the tags are
also able to sense activities and interactions around them. This
provides a form of ambient intelligence. This work develops a
foundational technique to enable this vision by marrying two
enabling technologies:

• Battery-less RF-powered tags with direct tag-to-tag
communication ability [28, 33, 39]. They are like RFID
tags [17, 18] but differ in one critical aspect – they can
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communicate among themselves without the need for
active1 radio-based device such as an RFID reader.

• ‘Device-free’ activity recognition (e.g., [50]) for infer-
ring activities via analysis of RF signals reflected from
objects and living beings in the surrounding environ-
ment.2

The marriage of these two disparate technologies empowers an
autonomous network of RF-powered tags with the ability to recog-
nize activities in the surrounding environments via a form of RF
sensing without any active radio device. The unique contribu-
tion of this work is to develop a foundational technique to
enable RF-powered battery-less tags equipped only with pas-
sive receivers to perform wireless channel estimation using
near zero-power techniques. The tags are also able to perform
multihop tag-to-tag communication [42] and thus can form
autonomous intelligent networks without direct help from
high-powered components such as access points or RFID read-
ers. We call the proposed design BARNET (‘B’ackscattering
‘A’nalytics and Activity ‘R’ecognition ‘Ne’twork of ‘T’ags). To
achieve its goals, BARNET tags use i) novel communication
techniques for channel measurement based only on passive
backscattering of external RF signals and ii) exploit these mea-
surements to perform analytics and to discover and interpret
meaningful patterns in the collected data. BARNET derives its
power from significant redundancy where all physical objects
are RF tagged and thus a large number of tags are always
available in the neighborhood.

To understand potential impact of BARNET, see Figures 1(a)
and (b). The first sub-figure (a) describes the scenario where
the channel between RF tags and an active radio transceiver
(e.g., RFID reader) is monitored. The sub-figure (b) depicts
BARNET wherein tags are capable of monitoring channels
between one another. This automatically can exploit O(n2)
channels as opposed to only O(n) channels. Additionally,
BARNET does not require communication with active radio
devices for its operation and is, in principle, able to use any
appropriate external RF signal, whether ambient or intention-
ally generated, as carrier for the backscatter communication
(Figure 1(b)). This ability to build autonomous networks with-
out the need for a central active radio communication con-
troller automatically enhances the scalability of BARNET as
compared to conventional active reader based systems (Fig-
ure 1(a)).

1We use the terms ‘active’ vs ‘passive’ to indicate devices that require on-board
power source as opposed to being powered by externally generated RF signals.
2The term ‘device-free’ signifies that the techniques do not require these objects
or beings carry any tag or device.
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Figure 1: (a) Traditional RFID system, (b) Proposed BAR-
NET system. Unlike traditional RFID, BARNET is capable
of tag-to-tag backscatter communications as well as activity
sensing on the tag-to-tag channel. This enables scalable de-
ployment (no active radio) as well as sensing on many more
channels (O(n2)).

1.1 Passive RF Sensing of Backscatter Channel
BARNET is a network of passive batteryless tags with a lim-
ited computational ability that i) directly communicate among
themselves via backscatter modulation of an external RF signal
and ii) can measure and record variations in the backscat-
ter wireless links. The tags are attached to everyday objects
identifying them, much like in RFID systems except that con-
ventional RFID reader devices are not needed. Tags could also
be part of the building infrastructure such as wall or ceiling
panels. RF exciters supply RF power and provide the signal
used for backscattering, but otherwise have no intelligence.
If strong enough ambient RF signals are available (e.g., TV
signals or WiFi [10, 28, 33]) they can proxy for exciters. See
Figure 1(b). Thus, intentionally deployed exciters are not crit-
ical for the fundamental techniques described here.3 Some
of tags (sink nodes) are attached to embedded platforms that
in turn connected via IP networks to an analytics server that
executes necessary machine learning functions. These embed-
ded platforms are basically gateways between the tag network
and external world - they do not need any RF communication
ability.

The multipath wireless channel between two passive tags
undergoes changes related to dynamic alterations in their
vicinity. BARNET exploits a fundamental characteristic of this
tag-to-tag backscatter link: amplitude of the received back-
scatter at an Rx tag varies based upon the phase of the channel
between the two tags. Then, by systematically varying the
phase of the Tx signal and quantifying the Rx signal ampli-
tude for various Tx phase values, we are able to formulate a
channel estimation technique for the radio-less tags. Such mea-
surement capability previously was limited to devices capable of IQ

3However, it is important to note that while recent literature [10, 28, 33] has
promoted use of ambient signals for backscatter communication, the actual
power levels used in these papers are unusually high relative to what could
normally be typically expected in ambient settings [40].

demodulation that requires significantly higher power. This innova-
tion is central to the passive tags that form the building blocks
in BARNET. Together with the communication and measure-
ment protocols, innovative hardware design and sensor fusion
BARNET forms a truly ubiquitous and scalable passive tag
network that can simultaneously provide identification and
activity recognition ability.

1.2 Contributions
In this paper we describe the BARNET vision and develop
the foundational principles underlying wireless channel mea-
surements using passive techniques that is central to BARNET.
We develop and analyze the basic tag design and show ex-
perimental results that demonstrate: (i) the feasibility of the
proposed passive channel measurement techniques, and (ii)
the usefulness of such channel measurements in recognizing
human activities in the surrounding space. The tag design
and power analysis are based on ASIC implementation to
ensure very low power operation using harvested RF power.
However, the experimental demonstration uses discrete off-
the-shelf components integrated on a printed circuit board
(PCB) that closely approximates the ASIC design, but has a
higher power consumption.

The specific contributions are summarized as follows:
• Passive techniques for backscatter channel measure-

ments (Section 3): We develop the concept of back-
scatter channel state information (BCSI). We show via
analysis how BCSI can be measured by systematic
multiphase probing of the backscatter channel. We de-
velop the necessary protocol support for multiphase
probing and recording the BCSI features.
• RF-powered tag architecture (Section 4): We develop

a tag design capable of i) tag-to-tag backscatter com-
munication and ii) BCSI measurements based on the
above concept. We perform a power analysis show-
ing that the tag is able to operate using harvested RF
power when implemented as an ASIC.
• Experimental demonstration (Section 5) We use tag

prototypes to experimentally demonstrate the BCSI’s
ability to characterize the backscatter channel and
recognize daily human activities.

2 BACKGROUND AND CHALLENGES
BARNET draws on two sets of fundamental advances in re-
cent years. We describe these advances below to outline a
context and describe the challenges.

2.1 Device Free Activity Recognition using
Wireless Signals

The human body is a reflector of RF signals and hence human
activities can be recognized by analyzing dynamic variations
of certain parameters of reflected signals. This enables activity
recognition without the need for humans to carry any sen-
sors or devices (i.e. ‘device-free’). Almost all of the related
research efforts employ some kind of ‘active’ wireless commu-
nication link for this purpose. Such links have powered radio
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transceivers. (WiFi has been often used due to its popularity.)
In such a link, the signal at the receiver SR at any time t can
be expressed as SR (t) = ARe

j(ωt+θ ), where AR and θ are the
amplitude and phase respectively of the received signal at
time t , and ω = 2π f , where f is the carrier frequency. Human
activities produce dynamically varying reflections that affect
AR and θ . The active receivers possess on-board radios with
a local oscillator operating at the carrier frequency. This en-
ables the well-known I-Q demodulation [22] providing the
receiver with a straightforward mechanism to measure both
AR and θ . Wireless device-free systems are based on observ-
ing dynamic variations in these or related channel parameters
and extracting patterns correlating to known activities. The
activity signatures are inferred from dynamic variations in
the channel in response to the activity rather than from static
signal levels. As a result, such systems are agnostic to their
deployment environment [50].

Based on the basic principle above, prior research has de-
scribed activity recognition systems using a variety of active
transceivers (e.g. USRP radio) and analysis approaches [8, 9,
24, 41, 45, 49]. A particularly appealing commodity-based ap-
proach uses existing WiFi chipsets to extract so-called Channel
State Information (CSI) [19, 30, 51, 55]. CSI describes ampli-
tude and phase of each OFDM subcarrier between each Tx-Rx
antenna pair and provides the added benefit of frequency
and antenna diversity [21, 52]. A central theme in these ap-
proaches, however, is the dependence on high power active
radio receivers for complex signal processing. This limits scal-
ability and the spatial granularity of measurements because
the number of such receivers per unit deployment area is
small.

2.2 Backscattering Tag-to-Tag Communication
In BARNET we are specifically interested in passive, battery-
less RF-powered tags to perform similar activity recognition.
The idea of passive RF tags has been the most widely em-
ployed in RFID (Radio Frequency IDentification) technology [11,
13, 16–18, 20, 47, 48]. However, such RFID tags can only com-
municate with a high power active radio, viz. the RFID reader.
Activity recognition systems indeed have been built using
RFID [25, 32, 38] but using processing on the reader-side only
(Figure 1(a)). BARNET removes this limitation by making
such processing possible directly on the tag (Figure 1(b)). To
understand the challenges of such on-tag processing, let us
first describe the regular RFID tag-reader link.

2.2.1 RFID Technology: Tag-Reader Link. In an RFID sys-
tem, the reader provides a continuous wave (CW) RF signal,
contains an active radio and has a relatively powerful embed-
ded processor. Almost the entire intelligence and complexity
in the RFID system is on the side of the reader. The tag is
entirely powered by the signal from the reader. The modu-
lated signal from the reader to the tag (Figure 2) typically has
a very high modulation index.4 The modulated RF signal emit-
ted by the reader is demodulated using a ‘passive’ envelope
4Modulation index is the ratio of the difference and average of the amplitudes
of the input RF signal for logic ’1’ and ’0’.
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Figure 2: RFID tag architecture showing various signals

detector circuit. Due to the high modulation index, the bits
are easily resolved by a comparator that follows the envelope
detection [17, 18], as illustrated in Figure 2. The comparator is
the only component that needs power other than the control
and processing units. The tag still works in near-zero power
regime with only the harvested RF power as power source.

For tag-to-reader communication, the tag simply modulates
its antenna reflection coefficient by switching between two
impedances that terminate the tag antenna circuit [17, 18]
and reflects back the reader signal. This is the well-known
backscattering communications principle [12]. The backscatter
signal received at the reader, however, has a low modulation index,
as the reflected RF power from the tag is small when it reaches
the reader traveling twice the distance between the reader
and the tag. The reader can indeed demodulate this signal,
but unlike the tag it employs IQ demodulation and active
cancellation of the interfering carrier signal. This processing is
key to the reader’s ability to decode the tag signal error-free.

While such conventional RFID technology has been em-
ployed for activity recognition using reader side processing,
the only work in our knowledge that attempts to do this on
passive RF tags is [29] where such tags are connected to smart
phones. The BARNET approach eliminates the need for high
power radios completely either for communication or for activ-
ity sensing. This eliminates the need for readers, access points
or similar devices, thus improving scalability for ubiquitous
deployment.

2.2.2 Backscattering Tag-to-Tag Link. Recent work [27,
33, 35, 37, 39, 44] has demonstrated that passive tags can com-
municate among themselves without any reader. In this case,
the RF signal for backscattering can come from RF exciters
that provide CW signals but otherwise do not have any intel-
ligence.
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Use of ambient RF signals is possible if they have enough
power to provide the needed excitation [33]. Our goal is to im-
part the tag-to-tag link an ability to measure and characterize
the backscatter wireless channel for recognizing activities in
the surrounding areas.

Before describing specific challenges, let us first describe
the signal level operation of the tag-to-tag backscatter link.
See Figure 3. The Tx tag backscatters the external excitation
signal, but now the signal must be demodulated by a passive
Rx tag. The signal observed at the Rx tag is superposition of
the excitation signal and the backscatter signal from the Tx tag
(plus corresponding signal reflections from the environment
). Assume that the Tx tag is modulating the backscatter by
changing the input impedance between two states. In the first
state, antenna circuit is open and the signal backscattered by
the Tx tag can be neglected. The received signal in this state
can be written as:

vR1(t) = AE (t)e j(ωt+θE (t )) (1)

where AE is the amplitude and θE is the phase of the signal
received at Rx tag. These parameters, AE and θE , define the
exciter-Rx channel . In the second state Tx tag reflects the
incident RF signal with a change in the phase ϕ. The received
signal at the Rx tag which is a superposition of the exciter
signal and the backscatter signal can be written as:

vR2(t) = AE (t)e j(ωt+θE (t )) +AB (t)e j(ωt+θB (t )+ϕ) (2)

AB is the amplitude of the backscatter and θB is the phase of
the exciter-Tx-Rx channel in the received signal. In the case of
an activity in the surrounding of the tags, Figure 3 illustrates
the change in the reflection paths that contribute to both vR1
and vR2 signals. The passive envelope detector only provides
the amplitude of the received signal. When the amplitude of
the backscatter signal AB is much smaller than the amplitude
of the excitation signal AE (i.e., AB/AE << 1), which is almost
always the case in BARNET, the difference in the amplitudes
of the received signals in two states becomes5:

∆vR (t) = v
amp
R2 (t) −v

amp
R1 (t) = AB cos(ϕ + θB (t) − θE (t)) (3)

The difference between the amplitude in two states, ∆vR , is the
signal that demodulator of the Rx tag has to resolve after the
envelope detection. We denote the phase difference between
the exciter-Rx and exciter-Tx-Rx wireless channels as θBC (t) =
θB (t) − θE (t), and call it backscatter channel phase.

The major challenge in the design of backscattering tag-to-
tag link is that now the tag has to resolve a low modulation
index signal that it receives from the Tx tag. Modulation
index in the signal after envelope detector, with the same
approximation (AB/AE << 1), is ∆vR/AE . Additionally, the
difference in the amplitudes ∆vR in the modulated signal
depends not only on the amplitude of the backscatter AB ,
but also on the phase difference between signals received at
Rx tag from the exciter and from Tx tag. This means that
∆vR can go down to zero depending upon the instantaneous
phase θBC making it harder for the demodulator. This can be

5This is derived from (1) and (2) by observing that
��AB
AE

�� � 1 and then applying

the Binomial approximation, (1 + x )n ≈ (1 + nx )
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Figure 3: The direct path and reflection signals in backscat-
tering tag-to-tag link scenario at two different time in-
stances.

addressed by changing the phase ϕ on the Tx tag [44]. This
is the approach we follow, but do not further elaborate in
this paper as we will solely focus on the activity recognition
aspects.

3 FOUNDATIONAL TECHNIQUES OF
BARNET

The backscattering tag-to-tag link comprises two wireless
channels, exciter-Rx and exciter-Tx-Rx, that are affected by
the activity in the surroundings. The goal of BARNET is to
enable measurement of the dynamics of these channels and
use it for activity recognition. If we are able to estimate am-
plitudes and phases of these two channels, or a significant
subset of them, the properties and performance of this activity
recognition technique would be similar to the conventional
RF activity recognition techniques outlined in Section 2.1, but
with the greatly added benefits of increased spatial granular-
ity and link diversity as stated in Section 1. However, as we
have elaborated in the previous section, the passive Rx tag
has an envelope detector that can only detect the the ampli-
tude difference ∆vR (t) in resultant backscatter signal given by
equation (3). Without the ability to perform IQ demodulation
like in an active wireless receiver (Section 2.1), the passive
Rx tag does not have any inherent ability to determine the
backscatter amplitude AB or the backscatter channel phase
θBC . Hence a generic passive tag cannot perform the dynamic
channel estimation needed for activity recognition. A central
innovation in BARNET is a novel communication technique
that overcomes this limitation and imparts passive tags the
ability to estimate the channel in real time by determining
both AB and θBC without the need for active IQ demodulation.
This technique is based on multiphase probing (MPP) of the
backscatter channel between a pair of tags, wherein the Tx
tag sends out the systematically designed MPP signal (see
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Figure 4: The received signal after envelope detection with
denoted measured signals

below) which in turn enables the Rx tag to estimate channel
parameters.

Empowered with this ability for channel estimation using
passive tags, BARNET can (1) measure wireless channel dy-
namics at multiple tags in a distributed manner and (2) ’fuse’
these distributed measures centrally for improved estimation.
As highlighted in Section 1, this concept amounts to a para-
digm shift by enabling use of passive tag networks for activity
recognition and physical analytics, applications which have,
so far, been almost exclusively restricted to the realm of active
radio systems.

3.1 Multi-Phase Probing (MPP) of Backscatter
Channel

To demonstrate our proposed technique, we once again con-
sider a single passive tag-to-tag link shown in Figure 3. As
derived in Equation 3, when the Tx tag backscatters, the ampli-
tude difference (for the two antenna states) detected at the Rx
tag using passive envelope detection is ∆vR = ABcos(ϕ + θBC )
where AB is the backscatter amplitude, θBC is the backscat-
ter channel phase, and ϕ is the phase introduced by the Tx
backscatter modulator. A key observation here is that the pa-
rameters AB and θBC vary randomly based on the dynamics
of the environment. However, ϕ is deterministic and fixed by
the Tx modulator and remains unaffected by environmental
dynamics. We use this key property in developing our MPP
technique for backscatter channel estimation.

Now, we consider a Tx tag with a modulator that can back-
scatter with K different unique phases ϕ1,ϕ2 · · ·ϕK . We refer
this modulator as capable of backscattering in K phase slots
with each slot characterized by its Tx phase ϕk . The MPP sig-
nal consists of a short bit sequence backscattered successively
over all available K phase slots. Then the signal detected by

the Rx tag in each slot becomes:

∆vR,k = ABcos(ϕk + θBC ),k = 1, 2, · · · ,K (4)

Figure 4 illustrates the envelope detected received signal for 3
successive transmissions (or 3 phase slots) of the MPP signal.
The Rx tag measures ∆vR,k for each slot while the characteris-
tic phase ϕk of each slot are known and fixed by the hardware.
Then, from Equation 4 the Rx tag can determine the key chan-
nel parameters AB and θBC as

θBC =
π
2
− ϕk

���
∆vR,k=0

and AB = ∆vR,k
���
ϕk=−θBC

(5)

Accordingly, the Rx tag can estimate θBC based on which value
of ϕk results in ∆vR,k = 0. It does this 1) by detecting the two
phase slots between which zero-crossing of ∆vR occurs and
2) then doing a weighted interpolation between these phases.
After having estimated θBC , the Rx tag knows the exact phase
slots between which the latter condition in Equation 5 will
be satisfied. It then estimates AB by weighted interpolation
of ∆vR,k between these phases. The coefficients of this inter-
polation is the same as those used in estimation of θBC . In
this way, using the MPP technique, BARNET can estimate the
channel parameters AB and θBC based only on the reception
of ∆vR without the need for any active demodulation. We will
describe the BARNET tag architecture for implementing this
technique in Section 4.

3.2 Backscatter Channel State Information
(BCSI)

As described in Section 2.2.2, in backscattering tag-to-tag link,
we are monitoring activity through two wireless channels;
viz. the exciter-Rx channel characterized by amplitude AE and
phase θE and the exciter-Tx-Rx channel characterized by AB
and θB . In the previous subsection, we have demonstrated
that using the MPP technique the Rx tag can measure the pa-
rameters, amplitude AB and phase θBC := (θB − θE ). In the
exciter-Rx channel, in the absence of backscatter signal, we can
passively measure only amplitude of vR1 by monitoring the
output of the envelope detector (Equation 1). Since we cannot
control the exciter behavior, we cannot measure the dynam-
ics of this exciter-Rx channel using an MPP like mechanism.
However, by recording the changes in the excitation level AE
between successive MPP cycles, we can extract valuable sup-
plementary information about this channel to aid in activity
recognition. We refer to this recorded value as ∆AE and it is
illustrated in Figure 4 .

Putting the above techniques together, we formulate a mea-
sure for the backscatter channel referred to as the backscatter
channel state information (BCSI). This consists of the following
three quantities:

1) backscatter channel phase θBC ,
2) backscatter amplitude AB , and
3) change in excitation amplitude between two MPP

cycles ∆AE .

This BCSI vector at time t , denoted by

h(t) =
[
θBC (t) AB (t) ∆AE (t)

]
,
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Figure 5: BARNET network showing two tags and one sink node.

is then used as as feature vector which forms the basis of
activity recognition in BARNET.

3.3 BARNET Operation
To demonstrate how BARNET functions, we consider a

situation with some human activity (movements) happening
in the vicinity of a tag-to-tag link as shown in Figure 5. We first
assume that there is only a pair of tags present in the vicinity
of the activity. We will later describe how a larger number of
tags would sense and process information. When there is no
activity in the vicinity of the tags, they largely remain idle and
just sense the excitation signal amplitudeAE for changes in the
environment. When a change in excitation signal is detected,
tags start channel estimation whereby one tag becomes the
Tx tag and starts sending out the MPP signal. We depict two
time instances during a specific movement being performed,
thus altering the backscatter channel between the two tags.
We denote the resultant backscatter channel phase of the two
instances as θBC (1) and θBC (2) (solid lines for instant 1 and
dotted line for instant 2). At both instances, the Tx tag sends
out the MPP over four different phase slots.

Figure 6 shows the format of the MPP signal packet. The
packet begins with self-identifier indicating which Tx tag the
MPP originates from. This is followed by a short synchro-
nization random number (SRN) which is used for time syn-
chronization when analyzing BCSI vectors sent from one Tx
tag received simultaneously at multiple Rx tags. Finally, the
packet includes the multiphase probe consisting of short slot
identifiers sent over the respective phase slots with brief de-
limiters separating them. This forms one cycle of MPP at time

t . The Rx tag processes this signal and estimates the afore-
mentioned BCSI vector. The Rx tag records the Tx identifier,
the synchronization random number (SRN), and then serially
records the BCSI feature vector, consisting of the values θBC (t),
AB (t) and ∆AE (t). The process of MPP transmission and BCSI
vector recording is then repeated throughout the duration of
activity, each time incrementing the SRN in Tx packet by 1.
The sampling time of the BCSI vector estimation is product of
the backscattering time at a single phase ϕk and the number
of phase slots K . The sampling rate is sufficiently higher than
the frequency/speed of the activities. The determination of
the sampling rate is also driven by the energy budget of the
Rx tag that limits the backscatter data rate and the number of
phase slots.

Our proposed technique is agnostic to deployment environ-
ment. This is because it utilizes phase diversity by introducing
a fixed, deterministic phase offset in each Tx phase slot. As
a result, the instantaneous phase difference between the re-
ceived signals in successive slots (i.e. within a single MPP
packet) is always fixed, irrespective of the environmental clut-
ter. Due to the location invariance, the sampled BCSI vector
collected for a specific activity in an environment will have
similar signature to the same activity performed in a differ-
ent environment, as well as activity performed by a different
person. This also means that the training of a classification
algorithm based on the recorded BCSI information can be per-
formed in a specific environment for a set of selected activities
and the obtained support vectors can be used for classification
in a different environment.

The classification task can be performed at different levels
of BARNET. The support vectors can be stored locally on each
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Figure 6: Transmission and reception of MPP signal

Rx tag and the classification task can be performed on tag if
the energy budget permits. The BCSI measurement, along
with the identifier of the Rx tag, can also be conveyed to a sink
node using multihop relaying for computation, as illustrated
in Figure 5.

In the case of multiple tags in the vicinity of the activity, a
single tag will act as the Tx tag at a time, sending out MPPs
and other neighboring tags will serve as Rx tags recording
BCSI information. Aloha-based collision arbitration will be
used in the MAC layer for giving the channel to a single Tx
tag. As shown in Figure 6, the ”Identifier” and ”Sync” fields in
the recorded Rx information will indicate simultaneous BCSI
measures for multiple Rx tags from the same Tx tag. Hence
these concurrent BCSI measures provide diversity that can ex-
ploited centrally to further improve the activity classification
accuracy.
4 BARNET RF TAG ARCHITECTURE
In order to operate purely using power harvested from ambi-
ent energy or dedicated exciter, the BARNET tag will have to
be implemented as an Application Specific Integrated Circuit
(ASIC).To demonstrate the feasibility of such a tag with the
functionality described in Section 3, we propose a hardware
architecture for this tag and then determine its power bud-
get. The circuits for measurement of BCSI are designed and
simulated for determination of the power consumption, while
the power consumption of conventional building blocks is
estimated based on the reported designs in the literature.

4.1 Tag Architecture
The architecture of the BARNET tag in an ASIC implementa-
tion is shown in Figure 7(a). A conventional backscattering
tag integrates the following modules: RF energy harvester,
power management logic and super-capacitor for generation
of power supply voltage and storage of extra harvested energy
beyond instantaneous consumption; modulator, demodula-
tor and communication control logic to enable backscatter
tag-to-tag communication and memory. See, e.g., [27, 33] for
examples. To enable on-tag activity recognition, the BARNET
tag enhances the backscatter modulator to enable it to send the
MPP signal. It also enhances the demodulator/receiver mod-
ule, shown in Figure 7(b), to make it capable of performing the
measurement of voltage signals ∆vR and ∆AE along with the

computational logic for the BCSI estimation based on the mea-
sured voltages. In the description that follows we highlight
the design of the enhanced modulator and demodulator.

4.1.1 Multi-Phase Backscatter Modulator. The Tx tag gen-
erates the MPP signal by reflecting the incident excitation
signal with a different reflection phase. This is achieved by
switching the tag antenna impedance between a range of sys-
tematically designed impedance values via a multi-port RF
switch. Each such impedance corresponds to a phase slot
available to the MPP signal. The reflecting phases span the
range from −π/2 to π/2 uniformly. The number of different
phase slots is trade-off between resolution, time required for
the MPP transmissions and power consumption.

4.1.2 BCSI Measurement and Demodulation. The mixed-
signal front-end of the BCSI estimator converts the voltages
∆vR,k and ∆AE to digital values within a single probing cycle ,
while the estimates ofAB and θBC are obtained from the digital
samples of ∆vR,k using computational means as explained in
Section 3.1. The most stringent constraint in the design of the
front-end of the BCSI estimator is power consumption. The
simplest approach for obtaining the digital values of ∆vR,k
and ∆AE would be to apply analog-to-digital converter (ADC)
to the output of the envelope detector and then in digital do-
main find ∆vR,k and ∆AE . However, the envelope detector
signal depends on the incident power at Rx tag. As the inci-
dent power at Rx tag depends on the distance from the exciter,
it has a large variation, leading to a wide-range signal at the
output of the envelope detector. To convert such signal to
digital domain, it would require use of a high-resolution ADC
as we are interested in a very small amplitude differences that
appear in this signal. The high-resolution ADC would have
a prohibitively high power consumption for RF powered tag.
This calls for different techniques that will leverage the ultra
low-power analog and mixed-signal signal processing to sep-
arately obtain ∆vR,k and ∆AE first in the analog domain and
then use a low-power low-resolution ADC to convert them to
digital values.

Measuring ∆AE . Figure 4 shows the received signal by the
Rx tag after envelope detection when the Tx tag sends the
MPP. As illustrated in the figure, we are measuring ∆AE as the
difference between amplitudes of the excitation signal AE at
the start of the successive MPP cycles. To reduce the effect of
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Figure 7: Block diagrams: (a) BARNET tag architecture in an ASIC implementation, (b) demodulator/BCSI estimator block
shown in more detail.

the irrelevant small changes in the environment and of noise
in the measurement, we apply passive low-pass filter to the
excitation signal AE prior to the subtraction. The excitation
amplitude AE is first sensed in analog domain by sampling
the value of the AE at the start of the MPP cycle and at the
start of the subsequent cycle, it is subtracted from the current
value ofAE . This analog value that represent ∆AE , obtained by
the sampled difference amplifier, is then be converted to the
digital domain using low-resolution, low-power ADC. Suc-
cessive approximation ADCs are very low power and based
on the similar implementations in the literature [23, 43] we
can expect a power consumption on the order of 10s of nW at
kSamples/s sampling rate.

Measuring ∆vR,k . The envelope detector signal comprises
a high pedestal signal corresponding to the excitation signal
amplitude AE (around 430 mV for a specific setup scenario
illustrated in Figure 4) and a small variation on top of the
large pedestal, signal ∆vR,k (up to 20 mV in the same illus-
trated scenario), that has to be measured. To resolve the signal
∆vR,k , we use the same analog front-end architecture as in
the demodulator that has been previously reported in [27].
Analog front-end comprises integrated band-pass filtering
and amplification. The high-gain amplifier is implemented as
the low-noise, low-power folded-cascode amplifier. The high-
pass filtering reduces the pedestal value and only the small
signal on the top of the pedestal is amplified. The output volt-
age signal amplifier with integrated high-pass filter, is then
converted to the digital domain using a similar architecture of
ADC, as the one used in the measurement of ∆AE .

Demodulation. The amplifier with integrated band-pass
filter used for measurement of ∆vR,k is shared by the demodu-
lator to demodulate data bits. The small amplitude baseband
signal is easily resolved with implementation of a low-power
comparator [27].

4.1.3 Activity Detector. The detection is implemented through
comparison of the excitation amplitude AE and time-delayed
version of the same signal, with the comparator as the only
active component. The power consumption of the activity
detector must be minimized as this circuit will be operating

continuously as long as tag is active even if there is no activity
in the environment. Also, the detector must operate while
the tag is harvesting RF energy. This means that the detector
design has to be co-optimized with the design of the power
harvesting circuit. These are more circuit-level explorations
and we plan to pursue these in future work.

4.2 Analysis of Power Consumption
To demonstrate the feasibility of BARNET tag operating on
RF harvested power, we estimate the power consumption of
proposed tag architecture. The power consumption of the pro-
posed architecture of the modulator and demodulator with
BCSI estimator is obtained through the simulations. We have
designed and simulated the demodulator/BCSI estimator in
45 nm CMOS technology. Keysight Technology’s Advanced
Design System (ADS) and Cadence Virtuoso are used for the
design and simulation. The detailed circuit implementation
of demodulator, comprising the analog front-end (amplifier
and band-pass filter) and the comparator has been reported
in [27]. Along with the the analog front-end for measurement
of ∆AE that comprises passive low-pass filter and sampled
difference amplifier, the demodulator/BCSI estimator without
two ADCs consumes 1.4 µW. The ADCs for BCSI estimation
can be implemented using the successive approximation ADC
architecture. Based on the similar implementations in the liter-
ature [23, 43], we estimate a power consumption of each ADC
to be in the order of 100 nW at kSamples/sec sampling rate,
leading to the overall estimated power budget of 1.6 µW for
the demodulator/BCSI estimator. The multi-phase backscat-
ter modulator, which is essentially an RF switch, consume a
fraction of the power of the demodulator/BCSI estimator.

The additional building blocks include computational logic
and memory. The computation is needed for BCSI vector
estimation, implementation of the algorithms for tag oper-
ation control and classification with stored support vectors.
Based on the implementation of processors with similar com-
putational logic and memory capacity in the literature [15, 26,
34, 36], we can estimate that the power consumption of these
blocks is on order of few µWs. It is important to note that while
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(a) BARNET tag (front) (b) RF Exciter

Figure 8: Prototypes BARNET tag and exciter used in the
experiments

some of the tags will be operating at the minimum incident
power, some of the tags will have higher incident power and
the computation can be off-loaded to these tags. Additionally,
power harvested at idle times and stored on super-capacitor
can enable more complex computation at specific tags.

With power consumption about 3 µW and assumed 30% ef-
ficiency of power harvesting circuits [46], BARNET tags could
operate from the harvested RF energy in the environment in
which the input power is on the order of −20 dBm. The tag-to-
tag link could operate at distance of 2 m if the Tx tag is also
receiving at the least the same input power of −20 dBm [27].
Similar power levels have been considered in ambiently pow-
ered backscatter tag-to-tag networks [33, 39]. Lower power
level is certainly possible, but will require careful power man-
agement beyond the scope of the current work.

5 PROTOTYPING AND EVALUATION
To demonstrate the feasibility of the backscatter channel char-
acterization through the outlined BCSI measurement method
and the utility of BCSI in recognizing human activities, we
have implemented a prototype tag using discrete components
on a PCB. This prototype tag enables a study and evaluation
of the principle functions of the BARNET tags. The prototype
tag includes a backscatter modulator for generation of the
MPP signal and a passive radio-less demodulator that enables
recording the received baseband signal for measurement of
BCSI vector.

5.1 Prototype Tag Implementation
The implemented prototype tag with the basic functionality of
the envisioned BARNET tag is shown in Figure 8(a). The pro-
totype is a 2-layer FR4 printed circuit board (PCB) in thickness
of 31 mils with components on both sides. A dipole antenna
is implemented on a separate PCB that is attached to the main
PCB using SMA connector. This modular design helps future
experiments with different types of antennas.

In the PCB implementation, the multi-phase backscatter
modulator consists of a 10-way RF switch (SP10T) SKY13404-
466LF [6] driven by a low-power micro-controller MPS430 [7].
The switch poles are connected to 10 different load impedances
to implement the 10 phase slots offering reflecting phases be-
tween −π/2 and π/2. Ideally, they should be uniformly spaced
for better estimation of the BCSI features though it was not the
case for the chosen impedances in the experiments for various
practical constraints.

On the receiving end, to obtain a measure of the BCSI vector,
we only have to extract the baseband signal. In Section 4, we
proposed mixed-signal ASIC implementation that can mea-
sure the BCSI vector from the baseband signal with a very
stringent power budget. For the PCB prototype, we obtain
the same measure in the digital domain from a baseband
signal digitized at high resolution. Although this approach
can not be used in the passive ASIC implementation due
to high power consumption and larger form factor, it pro-
vides a shorter implementation time and flexibility to study
the proposed technique in the prototyping stage. To obtain
the baseband signal, we first employ an envelope detection
comprising a two stage voltage multiplier implemented us-
ing zero bias Schottky diode HSMS-285x series from Avago
Technologies [4]. The output voltage signal of the envelope
detector, the baseband signal, is converted to digital domain
by a high-resolution 16-bit (full range 5 V) 80 kSamples/s
analog-to-digital converter. The recorded signal is captured,
transferred from tag to PC and stored in memory. From the
digitized baseline signal, the BCSI vector is obtained by mim-
icking the architecture shown in Figure 7(b) in Matlab. Matlab
implementation of the baseband signal processing to extract
BSCI information enables exploring the tag and network de-
sign parameters on a real-world collected data. This will
lead to optimization of the BARNET performance and design
parameters of the BARNET tag implemented as ASIC. One ex-
ample parameter is the resolution of on-chip ADCs, described
in Section 4, where the resolution of the designed ADC is
the trade-off between performance of the activity recognition
algorithm, communication data rate and power budget.

The RF power is provided by an exciter as sufficient am-
bient RF power level is not available in our lab. The exciter
only provides a fixed RF power and does not have any in-
telligence. For convenience, the The exciter is implemented
using a software radio platform (BladeRF [2]) and open source
software [3] (Figure 8(b)). The BladeRF is connected to a host
computer using USB3.0. In between BladeRF and Laird’s
902-928MHz 9dBi circularly polarized antenna [1], we plug
RF Bay’s 915-LNA series [5] to amplify exciter signal to sup-
ply the required excitation power. The exciter operates at
915 MHz and the tag antenna and the matching circuit have
been optimized to operate at this frequency.

5.2 BCSI vector measurement
Before analysis of the performance of the designed network
for activity recognition with the prototype tags, we use the
tags to evaluate the proposed BCSI measurement technique.
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ulation phase ϕk for two different distances between Tx-Rx
tags

The implemented prototype tag enables collection of BCSI
vector data for tag-to-tag link in a real-world scenario. We
hypothesized in Section 3 that the BCSI information provides
discriminatory features for recognition of activities in the vicin-
ity of the tag-to-tag link. The classification task can then be
performed using conventional machine learning algorithms.

We first verify that the amplitude difference, ∆vR,k , for
a different modulation phase ϕk follows Eqn. (4). For this
experiment, a Tx tag backscatters over ten phase slots and
we monitor the voltage signal after the envelope detector
in Rx tag by connecting the envelope detector output to a
high-resolution ADC. The modulating phase spans the range
from -π to π . For two different distances between the tags,
the amplitude difference ∆vR,k is extracted and plotted as
a function of the modulation phase ϕk in Figure 9. From
the Figure, we can see that the amplitude difference follows
Eqn. (3) and that for a different distance between the tags,
amplitude and phase of backscatter channel can be easily
extracted from measured ∆vR,k .

Next, we showcase the three components of BCSI vector
that we extract and use for activity recognition in order to
examine the patterns and repeatability in the feature vectors.
The components of BCSI vector, as defined in Section 3.2, are
the backscatter channel phase (θBC ) and amplitude (AB ) and
change in the excitation level ∆AE . We have two subjects
perform three different activities (falling, standing up and
walking) in a lab setting, in a room of size 9 m × 9 m. The
same protocol as in the previous experiment is used with Tx
tag backscattering at 10 different phase slots. The baseband
signal is recorded at Rx tag at 1.5 m distance from Tx tag. The
sampling rate of the BCSI vector is 20 Hz and we observe
for 1 s from the start of the activity. The time waveforms of
the three components of BCSI vector are plotted in Figure 10
for two runs of the same activity by each subject.. This
set of plots illustrates how repeatable the feature vectors
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Figure 11: The experimental setup for the activity recogni-
tion study showing the locations of exciter and tags

are for a specific activity irrespective of the subject and how
distinguishing patterns for different activities can be identified
in the time waveforms. Note that it is possible that just one of
the components of the BCSI vector is discriminating enough
to distinguish specific activities. For example, in Figure 10(a),
the channel phase time waveform is enough to discriminate
between falling and standing up. But walking appears similar
to standing up. On the other hand, walking and standing
up are fairly distinguishable using amplitude (Figure 10(b)),
while falling and standing up are similar. Similarly, while the
changes in excitation level plot in Figure 10(c) appear noisy
and provide little discriminatory power in the selected cases,
it does provide distinguishing patterns in other cases which
will demonstrated in the following experiment. Overall, even
visually, the three components of BCSI vector demonstrate
considerable discriminatory power.

5.3 Activity Recognition
After verifying the proposed technique for the characteriza-
tion of backscatter channel and visually inspecting the ob-
tained BCSI feature vectors for distinguishing features, we
conduct a study in which we evaluate the proposed technique
for the activity recognition.

The study includes 9 participants (8 male, 1 female, ages 25-
35, all healthy, physically fit and of average built) that perform
10 different daily activities. The activities are grouped into
8 classes: 1) brushing, 2) falling, 3) running, 4) no activity
(person is either sitting or standing still), 5) sitting down from
standing position, 6) standing up from seating position, 7)
walking, 8) waving (person is either sitting or standing while
waving). The activities are performed in a lab environment,
in a room of size 9 m × 9 m. The room outline along with
the positions of the RF exciter, Tx tag and four Rx tags and
the selected positions of the subject performing the activity is
shown in Figure 11.

The exciter power is set at 15 dBm. The Tx tag keeps trans-
mitting MPP packets alternating between the 10 phase slots,
as illustrated in Figure 6. Within each phase slot 16 Miller

encoded bits are transmitted at data rate of 10 kbps. The sam-
pling time of the collection of BCSI information, that is the
distance between subsequent MPP packets, is 50 ms and the
data is recorded for 2.5 s from the start of the activity. The
baseline signal is recorded at the sampling rate of 80 kSam-
ples/s with 16 bit resolution at full 5 V range at each of Rx
tags simultaneously. The recorded baseline signal is transfered
to PC, where the off-line measurement of BCSI is performed
prior to the classification. Each subject repeated 5 times each
activity in each of 4 depicted locations in Figure 11. Overall
60+ minutes worth of activities are recorded for the training
and classification.

While many forms of classifiers could be used , we chose
the Convolutional Neural Networks (CNN) due to their wide
use in the human activity recognition. Specifically, we use
available tools for CNN for Human Activity Recognition
(CNN for HAR) on the BCSI vector time series. We use avail-
able open source code multichannel CNN/HAR [53, 54]. We
adopt the commonly used architecture of the CNN used for
hand gesture recognition [14]. Since the input and output
dimensions are simpler in BCSI based activity recognition,
we have simplified the number of feature maps and sizes of
convolution kernels. We have chosen the parameters in CNN
κ = 1,α = 2 × 10−4, β = 0.75 and followed the rules of thumb
in [31] to choose other parameters.

One location in our experimental set up is selected as train-
ing location, and the other three locations are used for testing.
We choose one of the subjects as the training subject and the
others as testing. Figure 12(a) shows the average recognition
accuracy for each of the activities with 1, 2, 3 or 4 receiving
tags. Figure 12(b) shows the confusion matrix for the 4 tags
case. Note that for the running and walking activities there
are no separate training and testing locations as the activities
are based on paths. The overall accuracy when all 4 tags are
used is quite high, on average 94% across all cases. The
accuracy is generally lower when a smaller number of tags
are used. Clearly, more the number of tags more the accuracy
(Section 3). Some activities such as falling, running and walk-
ing exhibit close to 100% accuracy even with just 1 tag. Some
other activities (e.g., waving) have poor accuracy with 1 tag,
but improves gradually with more tags. We expect further
improvements with more tags. We expect significantly im-
proved overall performance when many tag-to-tag links are
used that we expect to be a common case in a typical BARNET
deployment (Figure 1).

6 FEATURES AND LIMITATIONS
BARNET presents a vision of activity recognition based on
the backscatter channel estimation of tag-to-tag links. We
have demonstrated the feasibility of this approach by using
prototype tags with the same functionality of the modula-
tor/demodulator as the proposed BARNET tags. We also
have demonstrated the location invariance, that is the loca-
tion of the person performing the activity with respect to Tx
and Rx tag has little or no affect on the feature vector and
classification rate. We have not, however, fully quantified the
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Figure 12: (a) Activity recognition accuracy for different activities with various sets of Rx tags (1, 2, 3 or 4 tags), (b) Confusion
matrix for the 4 Rx tags case.

classification rate as a function of the location. Even so, due to
the nature of feature BCSI vector that tracks the changes in the
backscatter channel, the surrounding environment provides
only an offset to all the three components in BCSI vector while
the signature of a specific dynamic activity is preserved. This
means that the network can be trained and tested in one envi-
ronment and used in other environments without retraining.
More extensive experiments are needed in order to provide
quantification of the classification rate in both of these cases.

In the outlined experimental study, we have used a simple
application scenario in which a preselected tag serves as Tx
tag and the other present tags serve as Rx tags. As the number
of the tags in the environment increases, the selection of the
Tx and Rx tags becomes more elaborate as it is a function of
latency in the network and available power budget at each
of the tags. This topic is a subject of future work. If multiple
tags are serving as Tx tags (the number of Rx tags does not
affect the sampling rate), the transmission of MPP packets has
to be time-multiplexed as all Tx-Rx channels have to obtain
samples of the BCSI vector. The relatively slow moving human
activities can be sampled at frequencies starting from 20 Hz as
used in our current experiments. With the data rate of tag-to-
tag link of 10 kbps and the number of phase slots on the order
of 10, we can see that the number of Tx tag used in recognition
of an activity can be rather large.

It is important to point out that a specific pair of Tx and
Rx tags has a limited range in the surrounding of the tags in
which the dynamic activity would cause substantial change
in the backscatter channel with discriminative power. This
means that the number of tags that would participate in a
specific activity recognition is limited. This is especially im-
portant in a multi-person scenario. The performance of the
system depends on the positioning of the users as well as the
tags. If the network can find one or more tag-to-tag links that
are influenced by one user and not by others, then there will be
little influence on the performance. Given the inherent close
range associated with backscattering tag-to-tag communica-
tion, this is likely to be the prevalent case in practice. However

if no link can be found that is influenced by the activity of
only a single user, then the classification task could become
challenging.

7 CONCLUSIONS
BARNET extends capabilities of passive RF tags to a different
regime. They not only are able to perform tag-to-tag commu-
nications under conditions of very low modulation index, but
also they are capable of channel measurements of the back-
scatter channel that correlates very well with environmental
changes around the tags. This latter ability translates to hu-
man activity recognition. In our prototyping experiments
BARNET tags’ recognition accuracy is competitive with active
radio-based techniques proposed in recent literature, while
the tags use only passive techniques. The BARNET tags are
designed to operate using harvested power from the exter-
nally provided RF signal and using only backscatter-based
communication. We envision that BARNET-like RF tags will
be essential components of future smart environments.
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