
Providing Line-of-Sight in a Free-Space-Optics Based Data
Center Architecture

Max Curran and Himanshu Gupta
Stony Brook University, Stony Brook, NY 11794

ABSTRACT
To overcome the shortcomings of traditional static (wired) data cen-
ter architectures, we recently proposed FireFly, a fully-flexible and
fully-wireless data center network fabric based on free space op-
tical (FSO) links. To facilitate a clear line-of-sight between the
FSO devices placed on racks, FireFly uses a full-ceiling mirror for
beam redirection. Use of a full-ceiling mirror imposes significant
operational and infrastructural challenge and expense. The focus of
our paper is to propose and evaluate alternative schemes to provide
line-of-sight for FSO links in FireFly. In particular, we propose
two schemes: (i) strategically placed multiple but small overhead
mirrors, and (2) “towers” on top of racks, on which FSOs can be
placed at regular heights. We develop comprehensive techniques
for the above suggested schemes, and demonstrate the viability of
these schemes by evaluating their performance using simulations
for various performance metrics of interest.

1 Introduction
Data centers (DCs) are a critical piece of today’s networked ap-
plications in both private and public sectors (e.g., [1, 2, 5–7]). A
robust datacenter network fabric is fundamental to the success of
DCs and to ensure that the network does not become a bottleneck
for high-performance applications [19]. In this context, DC net-
work design must satisfy several goals: high performance [9, 16],
low equipment and management cost [9,25], robustness to dynamic
traffic patterns [17,26,28,29], incremental expandability to add new
servers or racks [14, 27], and other practical concerns such as ca-
bling complexity [23], and power and cooling costs [15, 24].

Traditional data center architectures have been based on wired
networks; being static in nature, these networks have either been (i)
overprovisioned to account for worst-case traffic patterns, and thus
incur high cost (e.g., fat-trees or Clos [9, 13, 16]), or (ii) oversub-
scribed (e.g., simple trees or leaf-spine architectures [10]) which
incur low cost but offer poor performance due to congested links.
Recent works have tried to overcome the above limitations by aug-
menting a static (wired) “core” with some flexible links (RF-wireless [17,
29] or optical [12,28]). These augmented architecture show promise,
but have offered only incremental improvement in performance due
to various limiting factors. Furthermore, all the above architectures
incur high cabling cost and complexity [23].

To overcome the above cost-performance tradeoffs and rigidity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 1: High-level view of FireFly.
of past DC architectures, in our recent work [18], we proposed an
extreme design point—a fully flexible, all-wireless inter-rack fab-
ric using Free-Space Optics (FSO) communication links. The FSO
communication technology is particularly well-suited as it can of-
fer very high data rates (tens of Gbps) over long ranges (>100m)
using low transmission power and with small interference foot-
print [21]. Figure 1 shows a conceptual overview of our proposed
design called FireFly. A number of FSO devices are placed on
top of each rack and are connected to the top-of-the-rack switch.
Each FSO device assembly is capable of precise and fast steering
to connect to FSO devices on other racks. The controller intelli-
gently reconfigures these devices in real-time to adapt to changing
network requirements. Since the FSO beams may be obstructed by
other devices in the system, FireFly proposes use of a ceiling mirror
for beam redirection to ensure clear line-of-sight.

Paper Contribution and Organization. One of the key shortcom-
ings of the FireFly architecture is the proposed use of a full ceiling
mirror. A full ceiling mirror poses a significant operational and
infrastructural challenge and expense. In this paper, we propose
two alternatives to having a full ceiling mirror, viz., small overhead
mirrors (§3) and towers (§4) on racks, and develop comprehensive
techniques for each of these methods. Through extensive simula-
tions (§5), we demonstrate the viability of the proposed alterna-
tives. We start with a background on FireFly in §2.

2 Background: FireFly Overview
In this section, we give an overview of the FireFly architecture and
introduce a couple of terms viz., dynamic graphs and candidate
links.

As mentioned in the previous section, FireFly is a fully-flexible
all-wireless data center network architecture. It is based on the
key insight that flexibility can facilitate near-optimal performance
when done right. Below, we discuss FireFly’s key components and
benefits, so as to provide the necessary background and context.

FireFly Components. The FireFly architecture for data centers
comprise of following key components, viz., the FSO devices, link
steering mechanisms, and the network management techniques.

IEEE ICC 2016 - Optical Networks and Systems

978-1-4799-6664-6/16/$31.00 ©2016 IEEE

RX-1 TX

overhead mirror SM in“glass”
mode

RX-2

glass”
e

TX RX-1 RX-2

FSO
link

SM in “mirror” mode

(i)

(ii)

Figure 2: Using SMs to steer the TX-beam from (i) RX-1 to (ii)
RX-2. RX-s also have similar setup of SMs (not shown).

Overhead mirror

FSO link
with GM

Coverage-cone
of GM

ad mirror r

Figure 3: Movable mirror (GM) on an FSO device can steer the
beam within its coverage-cone.

FSO devices. FSOs are needed to create FSO communication links
in FireFly need to have a small form factor (so a few tens of them
can fit on the top of a rack), and must be able to deliver high data
rates at distance of 100 meters or more. and have low enough power
consumption. In our prior work [18], we demonstrated a design
of an FSO link prototype based on SFPs that satisfies the desired
requirements.

Link Steering Mechanisms. For network reconfigurability, the FSO
devices in FireFly are equipped with a mechanism to steer the laser
beam from one receiver to the next; for viable performance, this
steering must incur very low latency, i.e., in order of a few mil-
liseconds. In [18], two types of steering mechanisms, viz., switch-
able mirrors (SMs) and Galvo mirrors (GMs), were explored and
their feasibility for FireFly demonstrated. SMs are made from a
special liquid crystal material that can be electrically controlled to
rapidly switch between reflection (mirror) and transparent (glass)
states at millisecond timescales [4]. To use SMs for beamsteering,
each FSO device is equipped with multiple SMs with each SM pre-
aligned (done offline) to target a receiving FSO. The desired link is
established by switching one of the SMs in the mirror state, while
leaving the other SMs in the transparent state [18]. See Figure 2.
Galvo mirrors (GMs) [3] use one or more small mirrors that move
along specific axes within an angular range in response to a control
signal. This in effect can redirect a reflected FSO beam within a
pre-determined coverage cone (referred to as pre-orientation of the
GM; chosen offline). See Figure 3.

Network Management. Management of the FireFly network involves
two key tasks: (i) Due to physical and geometric constraints, there
is a need to preconfigure the network (done offline) with an appro-

priate number of FSOs devices, each equipped with a pre-oriented
GM or pre-aligned SMs; this preconfiguration essentially creates
a “dynamic graph” (see below) of possible links for use in real-
time. (ii) Then, at runtime, the FireFly controller needs to dynami-
cally select a runtime topology and configure routing tables at each
switch, based on prevailing traffic demands and events.

Cost, Performance, and Benefits. Our prior work [18] analyzed
FireFly’s performance and cost in comparison to several DC archi-
tectures. We estimated FireFly’s cost to be much less than other
architectures, and observed that, under simple traffic patterns, Fire-
Fly’s performance was comparable to that of the full-bisection band-
width networks and much better than the augmented architectures
viz., 60-GHz based 3D-beamforming [29] and optical-based CThru [28].
We refer the reader to [18] for more details.

FireFly promises several benefits in comparison to current DC
architectures. First, topological flexibility (if done right) can pro-
vide a low-cost solution (e.g., fewer switches, links) with new-
optimal performance. Second, an all-wireless fabric eliminates the
cabling complexity and associated overheads (e.g., obstructed cool-
ing) [23]. Third, a fully-wireless architecture can facilitate new and
radical DC topology structures that would otherwise remain “paper
designs” due to cabling complexity [27]. Finally, flexibility en-
ables easier incremental expansion of a DC and takes us closer to
the vision of energy-proportional DCs [8, 11, 20] by allowing the
flexibility to turn links on or off.

Line-of-Sight via a Full-Ceiling Mirror. FSO beams require a
clear line-of-sight (LOS) between the transmitter and receiver for
communication. However, beams emanating from the FSO devices
placed on top of the racks are likely to be obstructed by other FSO
devices. To circumvent these obstructions, [18] assumes a full ceil-
ing mirror (as in prior related works [29]) for beam redirection.
However, a full ceiling mirror introduces significant infrastructure
and operational challenges, as confirmed by our discussions from
DC operators. Thus, the focus of this paper is to explore alternate
techniques to establish line of sight.

Background Terms: Dynamic Graph and Candidate Links.
Dynamic Graph. Consider a FireFly network, i.e., a set of racks
each with a set of FSO devices each equipped with a pre-oriented
GM or pre-aligned SMs. We can establish a candidate (bi-directional)
link between a pair of FSOs a and b if (i) a has an SM aligned to-
wards b and vice-versa or (ii) a is located in the coverage-cone of
the GM at b and vice-versa. At any instant, only one candidate link
per FSO can be an active link. For example, in Figure 2, links (TX,
RX-1) and (TX, RX-2) are candidate links, and link (TX, RX-1) is
active in Figure 2(i) while (TX, RX-2) is active in Figure 2(ii). We
refer to the set of all candidate links as the dynamic graph. Given
a dynamic graph, we refer to a set of candidate links that can be
active simultaneously as a realizable (or runtime) topology. See
Figure 4. Note that the only constraint on a set of links to be active
simultaneously is that each FSO has at most one active candidate
link incident on it, due to lack of wireless interference.

Unassigned and Assigned Candidate Links. The dynamic graph and
realizable topologies can be viewed as graphs over the FSOs (with
candidate/active links between pairs of FSOs), or over the racks
(with candidate/active links between the corresponding racks). How-
ever, when a dynamic graph is looked upon as a graph over the
racks, the information about the association of candidate links to
individual FSOs is lost. In this paper, we would sometimes use
the notion of dynamic graph over racks, and refer to the candidate
links in such a dynamic graph as unassigned candidate links (in
contrast, the candidate links in the dynamic graph over FSOs are
assigned candidate links).

Rack-1

Rack-2

Rack-3

Rack-4

FSOs τ1
τ2

Figure 4: A dynamic graph with candidate links (solid and
dashed). The set of solid links represents one possible realiz-
able topology (τ1), and the set of dashed lines represents an-
other (τ2).

3 Line-of-sight via Overhead Mirrors
In this section, we describe a strategy that facilitates line-of-sight
(LOS) between FSO devices using a sufficient number of relatively
small mirrors in lieu of a full ceiling mirror. We start with a defini-
tion and the key ideas behind our techniques, and then present our
techniques for SM-based and GM-based FireFly architectures.

DEFINITION 1. (Reflection Point) Consider a FireFly network
with a ceiling (i.e., the height at which horizontal overhead mirrors
may be installed for beam redirection). The reflection point for an
assigned candidate link connecting two FSOs a and b is the point
p on the ceiling such that (i) a , b, and p are on the same vertical
plane, and (ii) p is equidistant from a and b. Essentially, p is the
point on the ceiling such that a beam from a when directed towards
p on a horizontal mirror will reach b.

Key Ideas. Our strategy to achieve LOS via placement of a number
of small overhead mirrors is based on the following insights.

1. First, observe that, for any dynamic graph, we can provide
LOS for each link individually and independently by placing
a small mirror at its reflection point. These small mirrors can
be very small, e.g., 1 cm × 1 cm to accommodate anticipated
misalignment tolerance.

2. The above approach however is likely to result in too many
mirrors – since the number of candidate links may be of the
order of O(n2) where n is the number of racks. However,
we observe that the “regularity” of the rack locations and
the FSO positions on top of the racks, will result in many
of these small mirrors to be located close-by. Thus, we can
“combine” multiple small mirrors into a slightly-larger mir-
ror, leading to a more manageable solution – comprising of
a smaller number of slightly-larger mirrors. E.g., Figure 5
shows placement of less than 4n mirrors, each of size equal
to the top of the rack, that are sufficient to provide LOS be-
tween FSOs placed on a rectangular grid of n racks.

3. We can further reduce the number and size of the individual
mirrors, by a careful assignment of (unassigned) candidate
links to FSOs. See Figure 6 for an illustration.

In the following subsections, we employ the above ideas to de-
velop techniques that aim to provide LOS for FSO links using a
sufficient number of small overhead mirrors, for each of the two
FireFly architectures, viz., SM-based and GM-based.

3.1 SM-based DC Architecture
In this subsection, we address the problem of establishing LOS in
FireFly with SMs as the steering mechanism. We start with the
problem definition.

X R1 R4
R2 R3

Figure 5: Top view of a DC with 16 racks (solid squares), and 49
overhead mirrors placed above all (solid and hollow) squares.
The mirror marked “X” provides LOS between FSOs on racks
R1 and R4 and R2 and R3.

R1 R3 R4 R2

R1 R3 R4 R2

Figure 6: Careful assignment of links to FSOs can reduce the
number of points and hence, the size of overhead mirrors re-
quired. Note that "overlapping in air" or "intersection at a
reflection mirror" doesn’t cause interference of the electromag-
netic waves.
SMM Problem. Informally, the SMM problem is to create a dy-
namic graph with near-optimal performance over the given network
configuration, while trying to minimize the usage of overhead mir-
rors. For simplicity, we represent the network performance by the
number of candidate links created.

Formally, given the FireFly network parameters, i.e., layout of
the racks, # of FSOs and their placement on each rack, # of SMs
per FSO, the goal of the SMM problem is two-fold: (i) to create
a dynamic graph over FSOs, and (ii) to determine the positions
of overhead mirrors to place on the ceiling to provide LOS for the
candidate links in the dynamic graph. The optimization objective is
two-fold: (i) maximize the number of rack-pairs that have at least
one candidate link between them in the dynamic graph,1 and (ii)
minimize the total area of rectangular overhead mirrors, under the
constraint that the total number of mirrors used is below a given
constant r.

SMM Algorithm. We start with creating a random simple graph
G over racks such that each rack has mk links, where m is the
number of FSOs per rack and k is the number of SMs per FSO (as-
suming mk is less than the total number of racks). We create a ran-
dom graph, based on the insights from prior works [18, 27]. Note
that G has the maximum number of links possible in any dynamic
graph. Our algorithm tries to assign these (unassigned) candidate
links of G to FSOs, and thus, creating a dynamic graph over the

1This is slightly different than simply maximizing the total number
of candidate links, since some rack-pairs may have multiple candi-
date links between them.

Figure 7: A pair of racks and its associated reflection polygon.

FSOs. Since the above method creates the maximum number of
candidate links possible in a dynamic graph, we can now just focus
on minimizing the total area of the mirrors placed.

The basic idea of our algorithm is to assign links to FSOs in a
way so that the resulting reflection points of the assigned candidate
links can be clustered (based on location) into a small number of
clusters (ideally, into r clusters). We achieve the above in two steps.
First, we cluster the unassigned candidate links appropriately, and
then assign the candidate links to FSOs in a greedy manner while
minimizing the total area of the mirrors; here we use one overhead
mirror (of appropriate size) to cover the reflection points in each
cluster. We discuss each of these two steps in more detail below.

Clustering of Unassigned Candidate Links. Since an unassigned can-
didate link can be characterized by the corresponding pair of racks,
the clustering of unassigned links can be looked upon as clustering
of rack-pairs. Essentially, we wish to cluster the rack-pairs, such
that two rack pairs (Ra, Rb) and (Rc, Rd) are in the same cluster
if any assigned candidate links connecting Ra to Rb or connecting
Ra to Rb will have closely-located reflection points. The idea is
based on the insight from Figure 6, wherein rack pairs (R1, R4)
and (R2, R3) should be clustered together. Before describing the
above clustering algorithm more formally, we define a term.

DEFINITION 2. (Reflection Polygon) For any pair of racks Ra

and Rb, we define the reflection polygon as the convex hull of the
reflection points of all possible (assigned) candidate links connect-
ing an FSO on Ra to an FSO on Rb. See Figure 7. To construct
the reflection polygon, we can just consider the sixteen reflection
points corresponding to the candidate links connecting the FSOs on
the “corners” of racks Ra and Rb, and then find the convex hull of
these points.

To cluster the rack-pairs, we first map each rack-pair to its re-
flection polygon. Then, we cluster the reflection polygons, and this
in turn clusters the rack-pairs. We cluster the reflection polygons
by “stabbing” them using a minimum number of points. Here, a
point is said a stab a polygon if it lies inside the polygon. This is an
instance of the well-known stabbing problem [22], and we use the
standard greedy approach to stab the given polygon with a mini-
mum number of points. The set of polygons that are stabbed by the
same point are placed in the same cluster; if a polygon is stabbed
by multiple points, then it is placed in one of the corresponding
clusters randomly.

Assignment of Unassigned Candidate Links. Once the rack-pairs (and
thus, the unassigned candidate links) have been clustered as above,
we employ the following greedy approach to assign the candidate
links to FSOs. Let the given set of unassigned links be E. In each
iteration, we randomly pick a link (Ra, Rb) from E that has not
been picked already, and assign it to the “best” pair of FSOs on
racks Ra and Rb. The best pair of FSOs is the one that results
in the minimum increase of the area of the overhead mirror cur-
rently being used to cover the reflection points of already-assigned
links in the cluster of (Ra, Rb). If (Ra, Rb) is the first link being
considered from its cluster, then the assignment to FSOs is done

randomly. While doing the above, we also ensure that no FSO gets
more than the maximum number of links allowed per FSO. Note
that the above algorithm allows each link to be eventually assigned,
thus, create a dynamic graph with maximum number of links pos-
sible.

After the above assignment, there may be more than r mirrors
(due to more than r clusters). In such a case, to satisfy the problem
constraint of r mirrors, we iteratively find and merge a pair of mir-
rors that results in minimize increase in the total area when merged
together.

3.2 GM-Based DC Architectures
In this susbection, we address the problem in the context of GM-
based FireFly architecture, where each FSO device is equipped
with a GM rather than a number of SMs.

GMM Problem. The input to the problem is same as that to the
SMM problem – except that each FSO is equipped with a GM. The
goal and objective of the GMM problem is also same as the SMM
problem except that the candidate links have another constraint,
viz., there must be an orientation of the GM at each FSO a so that
all the assigned links at a are covered by the GM.

Algorithm. The key difficulty in the GMMproblem is that for a
candidate link (a, b) connecting a to b to be valid – the GM of
amust “cover” b (i.e., the corresponding reflection point) and vice
versa. Thus, it would be effect to orient the GMs in pairs or sets
(as in the case of the GM-PCFT algorithm of [18] for the pre-
configuration problem). In light of the above, we solve the GMM
problem in the following three high-level steps.

1. As in the SMM problem, we consider a random simple graph
over racks – here, since there is no limit on the number of
links per FSO or rack, we consider a complete (simple) graph
G over the racks, and try to assign as many links of G as
possible (note that, in the GMM setting, we may not be able
to assign all the links of G). As in the initial step of the
SMM problem, we start with clustering the rack-pairs (or
unassigned candidate links).

2. Second, we orient the GMs in a way that ensure the follow-
ing: (i) there are an adequate number of FSO pairs that have
their GM’s covering each other, (ii) the candidate links in
the same cluster (as determined in the first step) have closely
located reflection points.

3. Third, we cover the reflection points of the assigned candi-
date links using a small number of overhead mirrors.

Since the first step is almost same as from the previous subsec-
tion, we describe in detail the second and third steps above.

Orienting GMs. As mentioned above, to ensure that we get an ad-
equate number of candidate links, we orient GMs in sets. In fact,
we can use the block-based heuristic from [18] for their GM-PCFT
problem, with a slight variation. We briefly describe the block-
based heuristic from [18] and then suggest our change. The block-
based heuristic runs in m iterations, where m is the number of
FSOs per rack. In each iteration, one FSO per rack is oriented
as follows. First, the given set of racks are partitioned into disjoint
blocks, such that each block of racks is co-located and small enough
to be covered by a GM (when appropriately oriented) on any FSO
in the DC. For a rectangular grid of racks, a simple grid-based par-
titioning scheme suffices to create these blocks. Next, we create a
random block-level matching M , and for each edge (B1, B2) in the
matching, we orient a GM on each rack of block B1 (B2) towards
a B2 (B1). In the original block-based algorithm, the GM picked

Figure 8: FSOs on a tower on rack

from each rack for orientation above was done randomly. However,
in our case, we would pick a GM (not already picked) in a way that
minimizes the sum of distances between the reflection points of the
candidate links in the same cluster; this is the only change from the
original block-based heuristic for our context.

Covering the Reflection Points of Assigned Links. At this point, we
have the candidate links assigned to FSOs, and thus, all we need to
do is to cover the reflection points on the ceiling with a small num-
ber of overhead mirrors. This can be looked upon as a set-cover
problem, where the reflection points are the elements to cover and
sets are the possible mirrors that can be placed on the ceiling to
cover the points. We limit the number of possible mirrors to con-
sider, by limiting the (i) shape of the mirrors to be rectangles, (ii)
corner points of the rectangles to be one of the reflection points,
and (iii) mirrors to be of an appropriate minimum size based on the
density of the points to cover; we omit the details. Thus, the num-
ber of sets are now polynomial in the number of reflection points,
and thus, we can employ a simple greedy approach to cover the re-
flection points using rectangles – we choose rectangles in the order
of p/A, where p is the number of uncovered reflection points cov-
ered by the rectangle under consideration and A is the area of the
rectangle.

4 LOS using Towers on Racks
One strategy to minimize obstructions without using any overhead
mirrors is to use a small number (1-3) of “towers” at the top of
each rack and place fixed steerable FSO devices at specific heights
on these towers. See Figure 8. This approach doesn’t eliminate
obstructions completely—since the FSOs and the towers may still
obstruct with the beams. However, such obstructions can be re-
duced to a minimum by a careful (i) placement of towers on the
rack, (ii) placement of FSOs on the towers, and (iii) assignment of
links to FSOs. In the following subsections, we design techniques
that maximize the number of links with clear line-of-sight (LOS)
that can be assigned to the FSOs in the network. Also, to make the
above LOS strategy based on towers viable, we need to design very
sturdy towers that can withstand the weight of few tens of FSOs
and preserve the alignment of the links. We believe that 2-3” diam-
eter towers reinforced wtih carbon fiber rods can easily provide the
required stability.

4.1 SM-based DC Architectures
In this section, we address the problem of establishing line-of-sight
by placing FSOs on towers on racks, in FireFly architectures where
the steering mechanism used is SMs.

SMT Problem. Consider a DC with n racks, each equipped with
a certain number of towers, with each pole equipped with a certain
number of FSOs. Each FSO is equipped with a certain number of
SMs. The SMT problem is to (i) place, i.e., determine locations,
towers on the top of the rack, (ii) place FSOs on each tower, and
(iii) create a dynamic graph such that each candidate link has a
clear/direct line-of-sight (note that there are no overhead mirrors
for beam redirection). The optimization objective is to maximize
the number of rack-pairs that have at least one candidate link be-
tween them in the created dynamic graph.

SMT Algorithm. As in §3.1 for the SMM problem, we start with a
random simple graph over racks with mk links; however, since we
may not be able to assign all the links due to occlusions, we try to
maximize the number of links of G that can be assigned. Aa a post-
processing step, we can add “duplicate” links between rack-pairs,
if possible.

Our algorithm consists of three steps: (i) First, we place the tow-
ers on racks in a greedy manner, (ii) Then, we place FSOs on the
towers at regular heights, and (iii) Finally, we prioritize links and
assign them, in the order of their priority, to the FSOs in a greedy
manner.

To determine the locations of the towers on the racks, we iter-
atively pick the best location on top of a rack to place a tower at.
Here, a location is ranked based on the total number of already-
placed towers that are visible from the location under considera-
tion. During the course of this greedy approach, it is ensured that
only the given number of towers are placed on any particular rack.
Once the towers have been placed, we place given FSOs on the
towers at regular heights.

Finally, we assign links to FSOs in a greedy manner – here, we
prioritize the (unassigned) candidate links, and then consider them
for assignment one by one in order of their priority. The priori-
ties are assigned as follows. First, observe that the main reason an
unassigned link may not be assignable is if the pairs of FSOs that
are actually available, between the corresponding rack pairs, may
not have a clear line-of-sight. Based on this observation, we priori-
tize the links in a way to avoid the above situation of not being able
to assign a link. In particular, for each link (a, b), we compute its
priority as the total number of pairs of FSOs that have a clear line
of sight and can be used to assign the link (a, b). Since the weight
may change over the course of the algorithm, we keep the weight
of links updated.

Now, we consider the links for assignment to FSOs in the de-
creasing order of their weights. When assigning a link – we pick a
pair of available FSOs that have a clear line of sight, and if no such
pair exists, we skip the link and go to the next link in order of their
weight.

4.2 GM-based DC Architectures
In this section, we address the problem of establishing line-of-sight
by placing FSOs on towers on racks, in FireFly architectures where
the steering mechanism used is GMs.

GMT Problem. The input to the problem is same as that to the
SMT problem – except that each FSO is equipped with a GM. The
goal and objective of the GMT problem is also same as that of
the SMTproblem except that the candidate links have another con-
straint, viz., there must be an orientation of the GM at each FSO a
so that all the assigned links at a are covered by the GM.

GMT Algorithm. First, we place the towers on the racks and FSOs
on the towers as in the SMT problem. To orient GMs, we observe
that obstructions due to towers and FSOs play a significant role in
whether a candidate link can be assigned or not. Thus, here, we
orient the GMs independently – rather than in pairs of sets as in the

Figure 9: Total area of overhead mirrors in (a) random grid
and (b) purely random layouts, for varying network size.

Figure 10: Percentage of rack-pairs with candidate links in (a)
random grid, and (b) purely random layouts, for varying net-
work size.
block-based heuristic described in §3.2. In particular, we prioritize
the GMs, and then consider them for orientation one at a time in
the order of their priority. For a network configuration that has
sufficient number of FSOs on each rack, the above strategy should
ensure that, for any rack, the set of GMs on that rack collectively
“cover” most of the other racks; as this holds for every rack, in most
cases, the above strategy should ensure that if a rack R1 is covered
by a GM g2 on another rack R2, then there is some GM g1 on R1

that covers g on R2 – ensuring the desired candidate link between
g1 and g2. This hypothesis is further confirmed by our simulation
studies.

To assign priorities to GM, we count the number of racks that are
“covered” by an orientation of GM – where a rack is considered to
be covered by a GM, if there is an FSO on the rack that has a clear
line of sign with the GM. We prioritize GMs based on its maximum
count across all its possible orientations. When trying to orient a
GM (when it turn comes), we pick the orientation that covers the
most number of racks.

5 Evaluation
In this section, we evaluate our proposed techniques. We start with
details of the simulations set-up.

Physical Parameters. The performance results of our proposed tech-
niques depend on the physical layout of racks. Thus, we consider
two different physical layouts: (i) Random Grid of Blocks, wherein
“blocks” of racks are distributed randomly in the given area with
the condition that they are axis-aligned; here, a block of racks con-
sists of 8 racks arranged in a 2 by 4 grid, with a 5 feet gap between
the two columns and an inch gap between the rows. (ii) Purely
Random: In this layout, the racks are independently and randomly
distributed in the given area; after locating each rack, we also rotate
each rack by a random angle. We assume the top of each rack to be
2′ by 4′, which is sufficient to accommodate around 50 FSOs [18].
We assume the ceiling to be 10 feet above the top of the racks. We
assume the total physical size of the data center to be five times the
area taken up the racks; thus, the 512-rack DC is assumed to be in
an area of 20,000 square feet.

For the overhead mirrors used in schemes of §3, we add a buffer
of 1/2 an inch to all sides of the mirror, to accommodate minor link
misalignments. For the tower-based approaches of §4, we assume
towers of 2 inch diameter and four towers per rack. The total num-
ber of FSOs are divided equally among the four towers, and vertical
distance between successive FSOs on a tower is 4 inches.

Network Parameters. By default, we run our simulations on a 512-
rack network, with each rack consisting of 48 servers as in [18]. For
the 512-rack, we equip each rack with 48 FSOs. For networks with
smaller number of racks, we proportionally decrease the number
of FSOs per rack. In all simulations, we assume the FSO device
to be equipped with either 10 SMs or a GM with a coverage angle
of 40 degrees. All communication links are robust 10 Gbps links.
Finally, as in [18], we assume an overall reconfiguration latency of
20 msecs for the SMs as well as GMs steering mechanisms.

Traffic Models. As in [18], we use synthetic traffic models based on
DC measurements [16,29]. As a baseline, we consider a Uniform
model where flows between pairs of racks arrive independently
with a Poisson arrival-rate λ/s, with an empirically-derived flow
size distribution [16]. We use λ as the knob to tune the level of net-
work saturation. Based on prior observations, we also consider the
Hotspot model [16], where in addition to the Uniform base-
line, a subset of rack pairs have a higher arrival rate λ2 and a
fixed large flow size of 128MB [29]. For Uniform loads, we
use the label Uniform X where X is average load per server (in
Gbps) by choosing suitable λ. For Hotspot loads, we use the la-
bel Hotspot(Y,X) where Y is the % of racks that are hotspots
and X is the additional average load on each hotspot server; all
Hotspot workloads use Uniform 5 as the background traffic.

Total Area of Overhead Mirrors. We start with comparing the
total area of overhead mirrors used by our techniques in §3 in com-
parison to the original FireFly architecture which uses a full-ceiling
mirrror. We consider both layouts, viz., random grid of blocks and
purely random, and plot the total area of mirrors used for varying
number of racks. We allow up to eight times as many mirrors as the
number of racks. See Figure 9(a)-(b). In both the plots, we observe
the following: (i) The total area of mirrors used is significantly
less then the full-ceiling mirror, especially for the SM-based archi-
tecture, (ii) The reduction for GM-based architectures is less than
that for the SM-based architectures — this is expected, since the
GM-based architectures have an additional constraint on the cre-
ated links, (iii) Finally, the total area of the mirrors used is linear in
the number of racks, which suggests the scalability of the schemes.

Percentage of Rack-Pairs with a Candidate Link. We now plot
the percentage of rack-pairs that have a candidate link in the created
dynamic graph, as it is an optimization objective of our schemes.
See Figure 10(a)-(b). We make the following observations for both
layouts: (i) As expected, the percentage is near 100% for the SM-
mirror scheme, since we are able to assign all links of the “full”
graph G, and the percentage of rack-pairs is slightly (about 10%)
less for the GM-mirror scheme due to the additional link constraint,
(ii) Surprisingly, for both the tower-based approaches, the percent-
age of rack pairs is near-optimal, i.e., very close to that of the SM-
mirror scheme, which suggests the overall robustness of the tower-
based approach, and (iii) With the increase in the network size, the
percentage of rack-pairs with links decrease slightly – this is ex-
pected since occlusions are more likely in larger networks.

Network Performance Metrics: Average Throughput and Flow
Completion Times. Finally, we evaluate the performance of our
schemes in terms of network throughput and flow completion times
for various traffic patterns. For this purpose, we implemented a cus-
tom flow-level network simulator that supports dynamic networks.

Figure 11: (a) Average throughput per server, (b) Flow completion times in short flows, and (c) Flow completion times in long flows,
in a 512-rack DC for different schemes and traffic patterns.

For this simulation study, we use the 512-rack network, and plot the
results for the grid-based physical layout (results were similar for
the purely random layout). Figure 11(a) plots the average through-
put per server; for the Uniform the average is over all servers
whereas for Hotspot the average is over the hotspot servers. Fig-
ure 11(b)-(c) show the box-and-whiskers plots (showing maximum,
minimum, median, 25%iles, and 75%iles) of the flow completion
times (FCT) for short (< 100MB flow size) and long flows re-
spectively. The simulations results are based on a 30 sec run. We
make the following observations: (i) the average throughput of all
schemes is near-optimal (i.e., close to the FireFly’s performance)
for all traffic patterns, except for the case of GM overhead-mirror
scheme which lags by about 5% in half of the traffic patterns, (ii)
the distribution of the FCTs of our schemes is nearly identical to
the FireFly architecture, except for the case of GM-based architec-
tures which lag by 5-20% for the long flows and more for the short
flows.

6 Conclusions
In this paper, we have proposed and evaluated alternative schemes
to facilitate line-of-sight in FireFly, an FSO-based fully-wireless
data center network. Our simulation results show the network per-
formance of our proposed schemes is near-identical to the original
FireFly’s performance, which demonstrates the viability and attrac-
tiveness of the proposed schemes. FireFly has unprecedented ben-
efits, but its use of a full-ceiling mirror limits it practicality. We be-
lieve that our proposed schemes and results remove one of the main
obstacles to the feasibility of FireFly architecture in practice. In our
future work, we plan to explore schemes that use non-flat mirrors
in areas other than the ceilings and combine the use of use mirrors
with our tower-based approach to yield more attractive schemes.

7 References
[1] Cisco Global Cloud Index: Forecast and Methodology, 2012 to 2017.

http://tinyurl.com/7gnfeeb.

[2] Data center survey.
http://www.flexiant.com/2013/09/04/report-shows-
global-data-center-growth/.

[3] Galvo mirrors. http://www.thorlabs.us/NewGroupPage9.cfm?
ObjectGroup_ID=3770.

[4] Kent optronics, inc.
http://kentoptronics.com/switchable.html.

[5] Magic quadrant for data center network infrastructure.
http://tinyurl.com/mpo3jzt.

[6] NSA Utah Data Center.
http://nsa.gov1.info/utah-data-center/.

[7] US government gives IBM cloud green light to serve agencies.
http://tinyurl.com/mx2v2mt.

[8] D. Abts et al. Energy Proportional Datacenter Networks. In Proc. ISCA, 2010.

[9] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center

network architecture. In ACM SIGCOMM, 2008.

[10] M. Alizadeh and T. Edsall. On the data path performance of leaf-spine
datacenter fabrics. In Proceedings of the 2013 IEEE 21st Annual Symposium on
High-Performance Interconnects, HOTI ’13, pages 71–74, Washington, DC,
USA, 2013. IEEE Computer Society.

[11] L. A. Barroso and U. HÃűlzle. The case for energy-proportional computing.
IEEE Computer, 40, 2007.

[12] K. Chen et al. OSA: An optical switching architecture for data center networks
with unprecedented flexibility. In NSDI, 2012.

[13] C. Clos. A study of non-blocking switching networks. Bell System Technical
Journal, 32, 1953.

[14] A. Curtis, S. Keshav, and A. Lopez-Ortiz. LEGUP: Using heterogeneity to
reduce the cost of data center network upgrades. In CoNEXT, 2010.

[15] N. Farrington. Optics in data center network architecture.
http://nathanfarrington.com/papers/dissertation.pdf.

[16] A. Greenberg et al. VL2: A scalable and flexible data center network. In ACM
SIGCOMM, 2009.

[17] D. Halperin et al. Augmenting data center networks with multi-gigabit wireless
links. In ACM SIGCOMM, 2011.

[18] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. Das, J. Longtin, H. Shah, and
A. Tanwer. FireFly: A reconfigurable wireless data center fabric using
free-space optics. In ACM SIGCOMM, 2014.

[19] J. Hamilton. Datacenter Networks are in my Way.
http://perspectives.mvdirona.com/2010/10/31/
DatacenterNetworksAreInMyWay.aspx.

[20] B. Heller et al. ElasticTree: Saving energy in data center networks. In NSDI,
2010.

[21] D. Kedar and S. Arnon. Urban optical wireless communication networks: The
main challenges and possible solutions. IEEE Communications Magazine,
2004.

[22] S. Kovaleva and F. C. R. Spieksma. Approximation algorithms for rectangle
stabbing and interval stabbing problems. SIAM Journal on Disc. Maths, 20(3),
2006.

[23] J. Mudigonda, P. Yalagandula, and J. C. Mogul. Taming the flying cable
monster: A topology design and optimization framework for data-center
networks. In USENIX ATC, 2011.

[24] R. N. Mysore et al. PortLand: A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric. In Proc. ACM SIGCOMM, 2009.

[25] L. Popa et al. A cost comparison of datacenter network architectures. In
CoNEXT, 2010.

[26] A. Singla et al. Proteus: a Topology Malleable Data Center Network. In
HotNets, 2010.

[27] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Networking data
centers randomly. In NSDI, 2012.

[28] G. Wang et al. c-Through: Part-time optics in data centers. In ACM SIGCOMM,
2010.

[29] X. Zhou et al. Mirror mirror on the ceiling: Flexible wireless links for data
centers. In ACM SIGCOMM, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

