
ExBox: Experience Management Middlebox
for Wireless Networks

Ayon Chakraborty†, Shruti Sanadhya, Samir R. Das†, Dongho Kim, Kyu-Han Kim
† Stony Brook University, Hewlett Packard Laboratories

† {aychakrabort,samir}@cs.stonybrook.edu
{shruti.sanadhya,dongho.kim,kyu-han.kim}@hpe.com

ABSTRACT
Enterprise wireless networks face significant challenges to
deliver Quality-of-Experience (QoE) with the variety of mo-
bile applications. One of the fundamental challenges is
that the traditional definition of network capacity (often de-
fined as throughput capacity) is not sufficient to reflect ap-
plications’ requirements in wireless networks. In this pa-
per, we propose to rethink the network capacity of wireless
networks to better incorporate QoE. Specifically, we first
propose a novel concept of an Experiential Capacity Re-
gion (ExCR) for wireless networks. ExCR is defined as a
set of simultaneous application flows whose QoE require-
ments can be satisfied by the network. Next, we present
the infrastructure based ExBox system that measures per-
application QoE metrics and determines the ExCR for wire-
less networks to better serve a set of mobile application
flows. In its core, ExBox employs light-weight machine
learning techniques that are tailored for dynamic wireless
environments. Through both large-scale simulations and ex-
tensive real-life experiments on WiFi and LTE networks, we
show that ExBox delivers QoE in admission control decision
with a precision of≈ 0.8 – 0.9, even when clients experience
diverse channel quality. Moreover, ExBox quickly adapts to
changing network environments without much overhead.

1. INTRODUCTION
Enterprise wireless networks (e.g., building, campus, met-

ros) are moving towards highly mobile environment. At
the same time, the diversity of applications as well as net-
work infrastructures is growing. For example, applications
range from web downloads to audio/video streaming, speech
recognition and desktop sharing. Networks range from var-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’16, December 12-15, 2016, Irvine, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4292-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2999572.2999597

ious incarnations of WiFi alongside LTE small cells [20]. It
is often a challenge for enterprise network administrators to
develop a good balance between network capacity and user
experience. Blindly over-provisioning access networks to
support all possible user demands is clearly prohibitive due
to both operational and spectrum costs. There is thus a need
for Quality of Experience (QoE) management so that spe-
cific demands are directed to right networks (i.e., network
selection) according to their respective loads. Moreover,
even when only one network is available, admission control
policies are needed such that aggregated user experience of
existing traffic does not suffer due to newly arriving flows.

There is already a large volume of research in network
selection and/or admission control (e.g., [10, 7, 31, 65, 51,
45, 56, 63]) that appears to be addressing these challenges.
However, these solutions have three critical limitations:
Focus on single QoS metric or application type: Most ap-
proaches focus on modeling Quality-of-Service (QoS) met-
rics, such as throughput, delay or loss. Often the focus is
on using only one such metric, typically throughput [65, 51,
45], either directly or via a utility function-based formula-
tion [55]. However, such metrics do not relate in a straight-
forward manner to the eventual quality of experience (QoE)
of the user, specifically for modern interactive and streaming
applications. In particular, there is a growing understand-
ing that multiple QoS metrics influence user QoE in complex
ways [29, 28]. Commercial admission control solutions fo-
cus purely on authentication [10] or use simplistic metrics,
such as maximum number of flows [7, 13] or bandwidth [55,
9, 2, 22]. While QoE based capacity has been proposed for
VoIP [62] and video flows [59], these models still cannot be
applied to real enterprise networks, which often contain a
mix of applications [34]. For instance, these models cannot
answer, "How does the QoE of existing VoIP flow change
when a new streaming video flow enters the network?"
Lack of ability to capture dynamic behavior: Unlike
wired networks, wireless networks suffer from multi-path
fading, interference and user mobility. Accordingly, the total
capacity of these networks also changes. Network adminis-
trators, thus, need to adapt to these dynamic network sce-
narios. For example, at some instant one VoIP and one Web
flow may be admissible in a WiFi network, but if the VoIP
user moves away from the access point, the observed QoE

http://dx.doi.org/10.1145/2999572.2999597

for VoIP flow may go down. Existing approaches cannot
capture such dynamic behavior.
Lack of ‘blackbox’ solution: Conventional admission con-
trol solutions such as [56, 53, 63] depend on a meticulous
modeling of packet queuing and traffic behavior. Most net-
work elements today (e.g., APs, middleboxes, switches) are
closed devices. This makes it hard to model their perfor-
mances accurately. For example, commodity WiFi routers
with apparently similar specifications can exhibit widely dif-
ferent performances in benchmarking [17]. Thus, a ‘black-
box’ modeling approach is preferred where a specific net-
work could be modeled via external measurements even
when complete internal specifications are unknown.

To address these limitations, we propose ExBox, an
Experience MiddleBox, which continuously explores the ca-
pacity of a wireless network.1 ExBox models network ca-
pacity in terms of a new notion of Experiential Capacity Re-
gion (ExCR) that we develop in this work. While ExCR is
motivated by the general idea of capacity region [65, 51, 45]
long been used to model the throughput-based capacity of
multi-user wireless networks, it specifically considers expe-
riential capacity helpful to manage QoE of users. Overall,
ExCR models the set of flows of different application classes
that can be accommodated in the network without hurting
user experience.

ExBox is capable of modeling diverse set of applications
with diverse QoE requirements and is able to capture dy-
namic environments. It models ExCR using a measurement-
driven, online learning approach that can be applied in a
blackbox setting, where detailed characteristics of individual
network elements are unknown or cannot easily be modeled.
ExBox can be deployed as a middlebox in a gateway device
in the enterprise setting, as shown in Figure 1. For enterprise
networks with different types of access networks, a separate
ExCR can be learnt for each access point/eNodeB and can
be used for implementing network selection.

Roadmap and Contributions: In summary the paper makes
the following contributions.
• We motivate the need for a new approach for capacity

modeling in wireless networks, based on user experience,
and introduce the notion of Experiential Capacity Region
(ExCR) (Section 2).
• We formulate the ExBox approach to learn ExCR and lay-

out its different components (Section 3). We discuss the
deployment issues for ExBox in real world (Section 4).
• We evaluate ExBox using WiFi and LTE network testbeds

involving 10 mobile clients and a single WiFi access point
or LTE eNodeB respectively (Section 5). We also per-
form a scale-up study using the ns-3 simulator [18] and
demonstrate the performance with 50 concurrent client
devices (Section 6). Overall, ExBox is able to manage
network-wide QoE through admission control decisions
with precision and recall rates of ≈ 0.8 – 0.9 and ≈ 0.65 –
0.8, respectively.

1Here, by network we refer to coverage of a single WiFi
access point or LTE eNodeB. See more on this in Section 4.4

Serving Gateway

PDN Gateway

ExBox

Wi-Fi Controller

Wi-Fi AP1

LTE eNB1

ExBox

Application
Server

H
et

er
o

ge
n

eo
u

s
A

p
p

lic
at

io
n

s

INTERNET

LTE eNB2

Wi-Fi AP2

eNB1 ExCR
eNB2 ExCR

AP1 ExCR
AP2 ExCR

Figure 1: ExBox is implemented as a middlebox collo-
cated with gateway devices.

2. RETHINKING NETWORK
CAPACITY

Our broad goal is to model network capacity in terms of
QoE across diverse application classes. This goes much be-
yond the single metric-based network capacity definitions.
The general notion of this experiential capacity is not en-
tirely new. For example, prior work has developed a similar
notion of network capacity for QoE-aware admission control
[59], which focuses on increasing the number of simultane-
ous video flows in 802.11 networks without compromising
the QoE. However, studies such as this are unable to model
diverse application classes that co-exist in the network [34].
An efficient admission control mechanism needs to capture
this mixed traffic.

To further highlight this, we have conducted a simulation
study using ns-3 and packet traces from Skype video con-
ferencing and YouTube high-definition video streaming. The
simulation setup is described in Section 6. In a simulated
WiFi network, we increase the number of video conferenc-
ing and streaming flows simultaneously. For each of these
applications, we calculate the per-application median QoE
and the average QoE of the network. QoE refers to user-
perceived quality of experience. For Skype video conferenc-
ing we use PSNR (peak signal-to-noise ratio) of the received
video as the QoE metric, while startup delay2 is used as the
QoE metric for the YouTube video streaming. Our simula-
tion does not have a real video conferencing application or
a streaming player, we estimate QoE in the following way.
QoS is modeled as the ratio of average throughput to delay.
We use the IQX model (to be discussed in Section 3.2) to
map such QoS values to corresponding QoE values. Figure 2
shows this QoE as a heatmap. The QoE values are normal-
ized for comparison purposes and also to calculate the aver-
age QoE of the network which is the mean QoE for all apps
in the network (Figure 2c). We observe in Figure 2a that as
number of streaming flows increases in the network, the QoE
for streaming goes down. However, the increase in number
of conferencing flows does not impact streaming QoE sig-
nificantly. This shows that with ≈ 20 streaming flows, the

2Startup delay is the time difference between the events
when a video playback is requested and it actually starts
playing.

 10 20 30 40
Number of Video Conferencing Flows

 10

 20

 30

 40
N

um
be

r o
f S

tre
am

in
g

Fl
ow

s

 0

 0.2

 0.4

 0.6

 0.8

 1

S
t
r
e
a
m
i
n
g

Q
o
E

Good

Bad

(a) Median QoE for Streaming Flows

 10 20 30 40
Number of Video Conferencing Flows

 10

 20

 30

 40

N
um

be
r o

f S
tre

am
in

g
Fl

ow
s

 0

 0.2

 0.4

 0.6

 0.8

 1

V
o
I
P

Q
o
E

Good

Bad

(b) Median QoE for Video Conferenc-
ing Flows

 10 20 30 40
Number of Video Conferencing Flows

 10

 20

 30

 40

N
um

be
r o

f S
tre

am
in

g
Fl

ow
s

 0

 0.2

 0.4

 0.6

 0.8

 1

O
v
e
r
a
l
l

Q
o
E

Good

Bad

(c) Average QoE of the Network

Figure 2: QoE as a function of the number of flows of two applications in the network

network may not be able to accommodate any more stream-
ing flows without hurting QoE, but it may still be able to ac-
commodate ≈ 10 more video conferencing flows. The video
conferencing QoE shows a different capacity in Figure 2b.
Up to 50 streaming flows can co-exist with ≈ 10 conferenc-
ing flows, without hurting the conferencing QoE. When we
compute the overall network QoE, i.e. median QoE of all
flows, we get the multi-dimensional capacity region seen in
Figure 2c. A simple count based admission control [7, 13]
will not be able to capture this multi-dimensional capacity
as there is no single number to limit all applications. For
the capacity region shown in Figure 2c, the maximum count
of admissible conferencing flows is ≈ 40, but the maximum
count of admissible streaming flows is only ≈ 25.

In addition to application diversity, there is also channel
diversity in wireless networks. We conducted testbed exper-
iments to show the impact of wireless channel quality, mea-
sured in terms of Signal-to-Noise Ratio (SNR), on the ex-
periential capacity. We use 4 phones connected to the same
Wi-Fi AP, where all or some of them have high SNR (placed
close to the AP, received signal strength of –30 dBm) and
others have low SNR (placed further away from AP, received
signal strength of –80 dBm). The phones simultaneously
play a YouTube video and record the video startup delay as
the QoE metric. Let us assume a desirable value of this QoE
metric is 5 seconds. In Figure 3 we see when all phones have
high SNR, all 4 video flows satisfy the QoE requirement,
however it is not the case when 2 of them have low SNR.
The video does not even play in some of the phones when
all phones have low SNR. It is interesting to note that the
QoE of clients in high SNR location is also impacted when
some clients move to a low SNR location. A pure rate-based
admission control [51, 9, 2, 22] will not capture this charac-
teristic. It will continue admitting low SNR clients as long
as the maximum rate usage allows, without considering the
impact on the high SNR clients.

2.1 Experiential Capacity Region
To accommodate these insights, we need a new model

of capacity that can handle QoE of multiple wireless users
using diverse applications. One way to do this is to re-
think the traditional modeling approach of the rate-based
capacity in terms of capacity region [51, 65]. Here, the

 0

 2

 4

 6

 8

 10

(4,0) (3,1) (2,2) (1,3) (0,4)V
id

eo
 S

ta
rtu

p
D

el
ay

 (s
)

(# High SNR Clients, # Low SNR Clients)

QoE Threshold

High SNR QoE Low SNR QoE

Figure 3: Impact of SNR on Video Streaming QoE.

multi-dimensional region representing the set of all possi-
ble achievable rate vectors < r1, . . . , rn > (where ri is the
rate of flow i and n is the number of total flows) models the
capacity region. In the following, we extend this notion to
develop the experiential capacity region.

Assume that there are k application classes and r levels of
SNR. SNR levels are formed by simply splitting the range
of SNRs possible in r discrete bins. Further, ai,j denotes
the number of active flows in the network for class i with
SNR of the wireless link in SNR level sj . For each flow,
we assume a ‘thresholded’ model for QoE, where the QoE
metric has been thresholded to acceptable or unacceptable
levels. This thresholding works because QoE often indeed
changes sharply from an unacceptable to acceptable level
with changes in related QoS parameters. This makes a traf-
fic matrix representing a number of flows of different classes
from different users < a1,1, . . . , ak,r > either achievable or
not achievable depending on the whether acceptable levels
of QoE for all these flows can be satisfied by the network
simultaneously. We call the discrete set of achievable traffic
matrices < a1,1, . . . , ak,r > the Experiential Capacity Re-
gion (ExCR). Our goal in this work is to develop empirical
methods to derive this region for a given wireless network.

A careful reader will note that this model of ExCR bears
similarity to the notion of ‘call admission region’ or ‘ad-
missible load region’ concepts developed in connection with
broadband networks and mobile cellular networks during the
90s and 00s. Many such studies do consider a mix of dif-
ferent types of traffic, e.g., realtime and non-realtime. See,
e.g., [56, 53, 63]. But they still use a single QoS metric:

rate. Further, these studies use an analytical modeling ap-
proach that requires full knowledge of system components,
e.g., queueing network model, service rates, etc. Instead,
we are interested in a blackbox approach where the network
must be probed to learn its characteristics. We elaborate on
the learning process next.

3. THE EXBOX DESIGN
In this section, we present ExBox, an Experience

MiddleBox that continuously explores the experiential ca-
pacity region (ExCR) of a wireless network. Following the
description in the previous section, ExBox captures the net-
work traffic matrix as < a1,1, . . . , ak,r >, where ai,j de-
notes the number of flows for application class i with SNR
of the wireless link in SNR level sj . We restrict ourselves
to SNR as the wireless channel metric in this work as this
directly influences PHY layer bit rate and bit error rate, and
thus has a direct correlation with the overall QoS of the link.
In our experiments reported in Section 6 only two levels
were found to be sufficient (low and high).

Classifying flows into application classes is the first step
in ExBox. Traffic classification has been extensively stud-
ied for both legacy and mobile applications [41, 58, 69, 47,
42, 67, 54, 32, 33] and we can leverage this work to clas-
sify an incoming flow into an application class (more in Sec-
tion 4.5). For the rest of the discussion, we assume that the
class of a flow is determined. ExBox defines the ExCR as
set of all traffic matrices of the form < a1,1, . . . , ak,r > that
have acceptable QoEs. Exploring this search space in a brute
force manner is: (i) prohibitive with multiple users, multi-
ple application classes and multiple SNR categories, and (ii)
indeterminable in scenarios where network characteristics
fluctuate. Instead, ExBox tries to learn the boundary of the
capacity region by using a binary classifier implemented us-
ing off-the-shelf machine learning tools. The learning prob-
lem in ExBox lends itself easily to SVM-based solution [40].
This is the approach we take here.

SVM is typically used for supervised deterministic binary
classification of multi-dimensional data. Intuitively, SVM
uses the training data to construct a hyperplane in the kr+1
dimensional space, where k is the number of application
classes and r is the number of SNR levels, as above. This hy-
perplane separates the universe in two separate classes. The
hyperplane intuitively defines the boundary of the capacity
region. While other supervised classification methods (e.g.,
decision trees) could be used by ExBox as well, we investi-
gate SVM for its intuitive fit with ExBox. The performance
results later will show that it works quite well relative to ex-
isting baselines. Regardless, the actual learning technique is
not central to the concept of ExBox and can be implemented
as a separate module that can be refined as needed.

Overall, ExBox consists of two main components: (i) Ad-
mittance Classifier: it uses SVM to classify incoming flows
as admissible or non-admissible and (ii) QoE Estimator: it
builds QoE estimates of existing flows on the network-side.
We discuss these components next, followed by the software
architecture of ExBox.

New flow

Is Bootstrap
true?

Build SVM
classifier

Cross-
validation
accuracy

high?

Yes

Bootstrap = False

Classify Flow with SVM

Does flow
classify as

acceptable?

Admit Flow

After B flows,
update SVM

Reject

Admit
Flow

Yes No

Yes

No

Bootstrap Phase Online Learning Phase

Figure 4: Flowchart for the Admittance Classifier

3.1 Admittance Classifier
One can visualize the boundary of experiential capacity

region as a multi-dimensional surface that separates the traf-
fic matrices with acceptable QoE from the traffic matrices
with unacceptable QoE. This forms the basic intuition of
the Admittance Classifier, which classifies the universe of
possible traffic matrices in two regions. Further, in order to
adapt to changing network conditions, Admittance Classifier
continues to re-learn the capacity region boundary. Our cur-
rent implementation of the Admittance Classifier uses off-
the-shelf Support Vector Machines (SVM) with batch up-
dates for online binary classification. Prior literature [64, 52]
has shown suitability of incremental or online learning with
SVM. Figure 4 shows the flowchart for Admittance Classi-
fier. The algorithm operates in two phases:
Bootstrap Phase is the phase where ExBox initializes the
classifier from zero information. In this phase, ExBox sim-
ply observes the network. All flows are admitted in the net-
work just as they were in the absence of ExBox. This allows
ExBox to learn traffic matrices with both acceptable as well
as unacceptable QoEs. It starts with ai,j = 0,∀i ∈ 1, . . . , k
and ∀j ∈ 1, . . . , r. As a new flow m of class c and SNR s`
joins the network, ac,` is incremented by 1. Next, the Ad-
mittance Classifier estimates the QoE of entire set of active
flows (including the new one) as Ym ∈ {+1,−1} using the
IQX hypothesis [44]. This is learnt using the QoE Estimator
described in the following subsection. A value of +1 for Ym
denotes that if flow m is admitted then still the new traffic
matrix will have an acceptable QoE. Similarly, a value of
−1 for Ym denotes that upon admitting the flow m the QoE
of one or more flows will be unacceptable.

Each incoming flow can impact the QoE of
all ongoing flows. ExBox defines the tuple
Xm = (< a1,1, . . . , ak,r >, (c, `)) to indicate a newly
arrived flow m of application class c and SNR s` when
the current traffic matrix is < a1,1, . . . , ak,r >. The tuple
(Xm, Ym) describes the influence of such a new flow on the

existing traffic matrix, where Ym classifies this influence in
one of two possible classes as described earlier. Over time,
Admittance Classifier learns many such (Xm, Ym) tuples
and uses them to train the SVM. Note that in the bootstrap-
ping phase, ExBox does not perform any admission control
– all flows are admitted regardless of any impact on QoE
of other flows. This phase is needed in order to collect a
diverse training set for Admittance Classifier. We show in
the evaluation that this phase is typically not too long.

As ExBox builds the Admittance Classifier from the train-
ing set, it also performs n-fold cross validation on the train-
ing set periodically. This is done by splitting the training set
into n random subsets, out of which the Admittance Clas-
sifier is trained using n − 1 subsets and is tested with the
remaining subset. To test the Admittance Classifier when a
flow p arrives, anXp tuple is created and the Ŷp label is com-
puted for Xp from the trained SVM model. This estimated
Ŷp is then compared with the Yp observed in the network
to compute accuracy. This process is repeated for all the
n subsets. When a predefined accuracy threshold is reached,
ExBox stops the bootstrapping phase. The Admittance Clas-
sifier becomes operational, enters the Online Learning Phase
and starts classifying each incoming flow as +1 (admissible)
or −1 (inadmissible).
Online Learning Phase executes in rounds and each round
is determined by a ‘batch’ of flows. After a batch-size B
number of flows has been admitted, ExBox re-computes the
Admittance Classifier with all the (Xm, Ym) observed so
far. Additionally, if the new batch contains a traffic matrix
< a1,1, . . . , ak,r > which has been seen in the past, the ob-
served QoE for that traffic matrix is replaced with the new
observed QoE. The Online Learning Phase enables ExBox
to adapt to changes in network and client population. For
example, if clients move farther from the WiFi AP, the QoE
of their new flows may worsen. Additionally, popularity of
Self Organizing Network (SON) solutions [1, 11, 21] en-
ables operators to dynamically change network configura-
tion and, in turn, change network capacity. In such cases,
the Admittance Classifier may classify new flows incorrectly
and needs to re-learn the capacity region. The online phase
enables this possibility.

3.2 QoE Estimator
The Admittance Classifier described above assumes

knowledge of QoE for each application class. In a real net-
work, obtaining QoE values from the users may not be prac-
tical as it involves deploying custom applications [26] or
modifying user devices [38]. A solution that requires end-
device modifications has a significant barrier for adoption,
given the BYOD trends prevalent in enterprise and campus
networks today. At the same time, user experience can be
most accurately measured at end device as different applica-
tions react differently to network characteristics.

Thus, ExBox uses an intermediate modeling-based ap-
proach where the QoE is estimated on the ‘network-side’ but
with some help from client devices introduced in the net-
work specifically for model training purposes. Such train-

QoE Estimator
Network Module

WiFi / PDN Gateway

QoE
Estimator

Client Module

Training
Mobile Device

Learning
Module

Bootstrap Phase

IQX
models

Admission
Classification

Update
Model

Online Learning Phase

App traffic

SVM
Model

User Apps

Non-Training
Mobile Device

User Apps

App traffic

App traffic
to/from Internet

Admitted App traffic
to/from Internet

QoE Data
+

App traffic
to/from Internet

Figure 5: Software Architecture of ExBox
ing needs in ExBox are fairly modest and can be accom-
plished by the network administrator. Based on this ini-
tial training, ExBox can estimate QoE of future flows from
passive network measurements on the network-side. Sev-
eral approaches have been proposed in the past [37, 28, 29,
26, 44] to measure application QoE from network measure-
ments. Among these, the IQX hypothesis [44] proposes a
generic relationship between QoE and QoS for multiple ap-
plications. This is useful to network administrator, who can
measure the network’s QoS but may not have knowledge of
application level experience. The basic formulation of the
IQX hypothesis is as follows:

QoE = α+ β.e−γ.QoS , (1)

where QoS and QoE are suitable metrics modeling domi-
nant QoS or QoE. The parameter γ regulates the contribu-
tion of QoS in QoE. The dominant QoS parameter varies
across applications, e.g. latency for web browsing and VoIP,
throughput for streaming, etc. The IQX hypothesis esti-
mates different QoE metrics for different applications. For
instance, QoE of web browsing is measured in terms of Page
Load Time, QoE of VoIP applications is measured in terms of
Peak Signal to Noise Ratio (PSNR), QoE of video streaming
is measured in terms of Startup Delay. ExBox uses the IQX
hypothesis to estimate per-application QoE. From a training
device in the network, controlled experiments can be done
to find the best fitting α, β and γ for a given application.
ExBox uses pre-defined thresholds [39] to map the QoE of
each flow m to Ym ∈ {+1,−1}. Section 5 presents perfor-
mance evaluation of the IQX model in a real testbed.

3.3 Software Architecture
Figure 5 shows the software architecture of ExBox.

ExBox learns the IQX model [44] for each application class
via an initial training with actual measured QoE values on
the client device. For this training the application class is
identified via established traffic classification methods [41,
58, 69, 47, 42, 67, 54, 32, 33]3.

A single training client device is used to record per ap-
plication QoE information via direct measurement using in-
strumented apps, and share the data with the QoE Estima-
3Note that the proposed traffic classification solutions work
for encrypted traffic as well.

tor module in the network. The QoE Estimator fits an IQX
model per application class and stores it for future use by the
Admittance Classifier. Finally, once relevant IQX models
are built, any regular flow (i.e., from a non-training mobile
device) is passed to the Admittance Classifier and steps de-
scribed in Section 3.1 and Figure 4 are executed. The SNR
level of a flow is computed from the SNR reported by the
WiFi access point (AP) or Channel Quality Indicator (CQI)
collected by the LTE base station (eNodeB).

4. QOE MANAGEMENT WITH EXBOX
We now discuss how ExBox can be used for QoE manage-

ment and address various practical operational challenges.

4.1 Network Selection
ExBox, as defined in previous section, can be used to ex-

plore the experiential capacity region of a given wireless net-
work. In enterprise networks where WiFi and LTE Small
Cells may co-exist, ExBox can be used to simultaneously
explore the capacity regions of both networks. It can boot-
strap and learn two separate Admittance Classifiers. Further,
when a new flow comes in, it can be used to decide whether
the flow can be admitted in either of the available networks.
If the answer is +1 from both classifiers, ExBox can select
the best suited network based on how much ‘inside’ the ca-
pacity region the new test point is. There is a straightforward
mechanism to do this in SVM by evaluating how far away
from the separating hyperplane the test point lies. ExBox
can operate from within the infrastructure with limited sup-
port from a training device in the network. In the case of
hybrid WiFi-LTE networks, ExBox can be collocated on the
LTE PDN gateway, which can view both WiFi and LTE traf-
fic and perform network selection.

4.2 Admission Control
Before ExBox can make the admission decision for a flow,

it needs to know the application class of that flow. Existing
traffic classification solutions [41, 58, 69, 47, 42, 67, 54, 32,
33] analyze the first few packets of the flow to decide which
category it belongs to. Thus, a flow needs to be admitted
briefly before any admission control decision is made. Once
ExBox makes the admission decision, it can be executed in
multiple ways. In a single network scenario, if ExBox deter-
mines the flow to be admissible it goes through the network.
However, if a flow is determined to be inadmissible, then the
flow can be (i) discontinued from the gateway or (ii) admit-
ted in a low priority access category,such as in 802.11e. In
case a flow is not admitted the user is notified by a message
(e.g., Smart TVs already reject flows because of insufficient
bandwidth [3]). In a wide multi-cell deployment, ExBox de-
termines the best network suited for an incoming flow and
moves the flow to the accepting network. In multi-cell WiFi
networks, flows can be easily migrated from one AP to an-
other through the WiFi controller [6]. In LTE networks, the
serving gateway (SGW) can assist mobility across 3GPP en-
tities. In hybrid LTE-WiFi deployments, the 3GPP IP flow
mobility standard [14] allows for seamless offload between

LTE and WiFi. Note that executing ExBox’s decision of re-
jecting flows may leave some users disconnected or unable
to use intended applications. This is governed by the admit-
tance policy of the network administrator. They can choose
to allow best-effort connectivity to as many flows or main-
tain their promise of good QoE to certain users at the cost
of disappointing other users. ExBox aids them in making a
more informed choice.

4.3 Dealing with Network/App Dynamics
While the Admittance Classifier defined in the previous

section focuses on admission control, a flow’s behavior may
change after being admitted. One reason is that the appli-
cation adapts to changes in the end-to-end network through-
put or delay. This may lead to change in QoE of the flow,
e.g. YouTube can downgrade the video quality from high-
definition to low-definition. Another reason could be user
mobility. The wireless link quality between a device and
the WiFi AP (or LTE eNodeB) can change depending on
the distance of device from AP, multi-path fading, etc. If
a flow is admitted in the network when the device is close
to the AP, its QoE may deteriorate when the device moves
farther from the AP. Additionally, in a contention based sys-
tem, such as 802.11 WiFi, a low rate device can reduce the
rates experienced by others (throughput fairness). In such
cases, ExBox needs to revise its decision of admitting such a
flow. For this purpose, ExBox periodically polls the network
to check if the flow characteristics (throughput, delay, loss)
have drastically changed or if the SNR levels of any device
have changed. It then constructs a new tuple Xm from the
current traffic matrix and computes Ym from the Admittance
Classifier. If the new Ym is −1, this flow is considered inad-
missible and offloaded to another network or discontinued,
as governed by the admittance policy discussed above.

4.4 Scaling to Large Networks
In this work we modeled only one access device or cell

(WiFi AP or LTE eNodeB) to limit the state space to be con-
sidered. In a typical enterprise or campus network, multiple
WiFi or LTE cells are deployed to cater to the large popula-
tion. To better serve all users, the network administrator can
scale up the ExBox system to simultaneously learn classi-
fiers for multiple cells. Being located on the WiFi controller
or PDN gateway enables ExBox to have this wide view of
the network. The classifier is a kr + 1 dimension vector for
k application classes and r SNR classes. One such classifier
needs to be periodically learned per cell.

One can argue that the single access device model limits
the applicability of ExBox, as it cannot consider interfer-
ence arising from neighboring cells. However, we expect
that in most enterprise deployments the channel/cell plan-
ning is done carefully enough that the influence of such inter-
ference actually affecting capacity is minimal. On the other
hand, this simplification is computationally convenient. In
our future work, we plan to perform evaluations on larger
networks to determine whether any refinement of the basic
ExBox will be necessary.

In ExBox can be deployed widely, it is also possible to

share IQX models over different networks of similar char-
acteristics. This will reduce the training effort substantially
and/or will help in more robust model creation, e.g. influ-
ence of device heterogeneity on IQX models can be consid-
ered. Existing work on QoE estimation [26, 28, 29, 38] does
not consider such heterogeneity in their models. This is an
interesting direction of future work.

4.5 Flows, Apps and Users
We have used ExBox to do flow-based admission control

in this work. However, many modern applications use mul-
tiple flows in the same app. For example, YouTube uses
separate flows to play the main video and to load video rec-
ommendations. Thus, flow-based admission control may not
always be appropriate and an app-based admission control
may be preferred. ExBox can be extended to handle such
cases through an app-based admission control. This can be
achieved by leveraging the flow classification tool to iden-
tify the dominant flow that determines the app’s QoE [60,
38]. For example, in a video streaming app, the flows car-
rying video data and control are dominant although other
flows carrying app-analytics data or advertisements may be
present. The admission control now can use a heuristic that
admits all flows for that app if the dominant flows are admit-
ted. This is an interesting direction of future work.

In the same note, a single user may use multiple apps con-
currently, that are to be considered separately. It is possible
that some apps are admissible and others are not for the same
user. The inadmissible flow/app may be discontinued from
the WiFi controller or PGW, or selectively offloaded to an-
other network. Distributing flows over multiple wireless in-
terfaces or wireless networks has also been studied in prior
research [46, 50, 35].

5. EXPERIMENTAL EVALUATION
In this section we evaluate ExBox using QoE traces col-

lected from a mobile testbed. We first explain how we collect
the traces and then present results from our trace-based eval-
uation. We evaluate the Admittance Classifier and the QoE
Estimator modules separately over the same testbed. In the
next section we evaluate the entire ExBox solution through
large-scale ns-3 simulations.

5.1 Testbed Setup

Mobile clients: We use 10 Samsung Galaxy S6 phones,
running Android OS, as clients or user equipments (UEs)
to generate different types of flows. The clients either con-
nect to a WiFi access point or to an LTE eNodeB that are
deployed as a part of our testbed.

WiFi Network: We host the WiFi access point on a lap-
top whose WiFi interface can be switched into access point
mode and serve as a WiFi hotspot. We use a well provisioned
laptop (an HP ZBook with 16 GB memory and quad-core
Intel i7 processor). The Linux utility hostapd is used to
configure it as a WiFi hotspot. This setup enables us to cap-
ture network traffic from the UEs connecting to the hotspot

at the very first hop. It also allows us to shape traffic pa-
rameters (throttle bandwidth, introduce delay, losses) using
Linux utilities tc and netem on the laptop. We use WiFi
channel number 5 that is interference free in our lab area.
The WiFi testbed setup is shown in Figure 6a. We run ca-
pacity tests on the WiFi link and observe 20 Mbps iperf
UDP throughput and ≈ 30 – 40 ms ping latency. The low
throughput is an artifact of the WiFi driver on the laptop but
it does not impact our evaluation as ExBox does not make
any assumptions on the maximum bandwidth.

LTE Network: We have an LTE small-cell testbed in our
lab. It consists of LTE core network as well as eNodeB. We
use ip.access E-40 [15] as our eNodeB. In the core network
we use licensed OpenEPC [19] software stack. The core net-
work consists of 3GPP [23] standard-compliant EPC com-
ponents such as MME, SGW, PGW and HSS. Each compo-
nent runs in a Linux-based virtual machine. For each UE,
we have our own user subscription information (e.g. IMSI)
programmed on a SIM card. We are able to simultaneously
connect 8 UEs to the E-40 eNodeB. This is the maximum
bound of the current version of software in ip.access E-40.
This is the best we can currently do in a lab-grade EPC de-
ployment4. We run the packet capture (tcpdump) and traf-
fic shaping tools (tc, netem) in the virtual machine hosting
PGW. The LTE testbed setup is shown in Figure 6b. iperf
and ping tests on the LTE link show more than 30 Mbps
capacity and ≈ 30 – 40 ms latency.

5.2 Experiment Methodology

Client Apps: For our experiments we developed two An-
droid apps and a UI automation script to generate web, video
streaming and video conferencing flows. We chose these
three application classes because their respective QoE is in-
fluenced by different underlying network attributes. Each
app also records the corresponding QoE ground truth. None
of the apps require root privilege.

• Web Browsing App: The web browsing app embeds a
Webview client acting as the browser which continually
loads a specific sequence of webpages. The app records
page load time as the QoE metric. For benchmarking we
focused on similar sized webpages: we use mobile web-
sites of Amazon, BBC and YouTube. No video is played
on YouTube as we just load the homepage. The app clears
the browser cache after a page load is over to make sure a
fresh copy of the page is fetched every time.
• Video Streaming App: The video streaming app embeds

a YouTube–video player that repeatedly plays a video. We
use a 2–minute video clip from YouTube that is avail-
able in HD-format (720p).5 We use the YouTube Android
Player API [25] that captures video playback events like
video loaded, video started, video buffering, video playing
and so on. Every time a video is played the app logs all

4Open Air Interface (OAI), another popular EPC implemen-
tation, currently supports only a couple of UEs stably.
5The median video clip playback length in YouTube is≈ 2.5
sec [61].

10 UEs Running Experiments

Controller Script

Laptop as WiFi Access-Point

(a) Wi-Fi Testbed with 10 UEs

LTE
eNodeB

8 UEs

OpenEPC
System

+
Controller

(b) LTE Testbed with 8 UEs

Video Conferencing Video Streaming

Web Browsing

(c) Apps running on UEs

Figure 6: WiFi and LTE testbed setup for evaluation of ExBox

such player events with corresponding timestamps. The
video startup delay is used as the QoE metric. This is
measured as the time it takes the video to start playing
from the instant the video is requested [68]. We rarely
observe additional video stalls as the most of the con-
tent is downloaded during the initial start-up delay period.
Hence we do not consider buffering ratio or buffering rate
or average bit rate as the QoE metric in our setup, however
they can be used in principle.
• Video Conferencing App: For video conferencing, we

use Google Hangouts along with a UI automation script.
One peer of the Hangouts call runs in a cloud server and
the other peer on the phone initiates a call. For tasks such
as choosing the contact, placing a call and ending the call,
we use the AndroidViewClient library [5] that can per-
form UI automation over Android Debug Bridge (adb)
tool[4]. This allows us to control the Google Hangouts
sessions on the phone from the client controller described
below. On the cloud peer a prerecorded video file is
played through a virtual camera software (e2e Vcam soft-
ware [12]) and is put as camera input to the Google Hang-
outs call. The video received on UE is screen recorded.
The QoE of video is measured in terms of PSNR (Peak
Signal-to-Noise Ratio) in dB [66]. PSNR measures the
relative degradation in the frame quality between the sent
and received videos.

Client Controller: Figure 6c shows all 10 UEs running a
combination of the apps defined above. The apps are sched-
uled by a central controller that resides in the access-point
(laptop), in case of the WiFi network, or PGW, in case of
the LTE network. The clocks on UEs and the controller are
synchronized with an NTP server. The controller communi-
cates to the UEs, wirelessly, using the adb tool. The con-
troller can start or stop any application on any of the UEs, in-
cluding the Google Hangouts calls. It also periodically runs
a ping command to the UEs and logs corresponding RTT
values. It can also capture network traffic using tcpdump.
The controller gives a systematic interface to conduct ex-
periments on the mobile testbed. For example, in order to
measure the ground truth for experiential capacity we need
to run different number of web, streaming and video confer-
encing flows. The controller takes the traffic matrix (#web,
#stream, #videoconf) as input and launches corresponding

number of apps in terms of the number of flows belonging
to the three different classes on a random subset of the UEs.

Traffic Patterns: We use two schemes to generate these
traffic matrices:
(i) Random: This scheme considers completely random
flow arrival/departure traffic pattern. Thus (#web, #stream,
#videoconf) can change randomly and drastically.
(ii) LiveLab: To create more realistic traffic pattern we
mined Rice University’s LiveLab dataset [16]. This dataset
has 34 users and application usage logs with ≈ 1.4 million
entries. Each entry consists of the application name and the
time it is triggered. It also contains the length of time the ap-
plication was used. We filtered the set of application to a few
limited ones that specifically indicated web (e.g., Opera, Sa-
fari, Chromium etc), video streaming (e.g., YouTube, Netflix
etc.) or video conferencing activities (e.g., Google Hang-
outs, Skype etc.). Using this set of apps and their start and
end time, we were able to compute the number of flows of
each application class that are active simultaneously. This
provided us with the traffic-matrix. We converged to≈ 1700
traffic matrices of (#web, #stream, #videoconf), which are
sorted in chronological order. Several traffic matrices do re-
peat in this set. In our experiments, we only consider those
traffic matrices where total number of flows is less than 8
(LTE Network) or 10 (WiFi Network) due to limitation in
our testbed. We assume that all users are present in the same
network. We place all devices in high SNR locations. We
evaluate diverse SNR scenarios later, using simulations.

5.3 Evaluation Results
We first evaluate the performance of Admittance Classi-

fier. We run all the traffic matrices observed in the traffic
schemes defined above, multiple times in each testbed. For
every traffic matrix, we record ground truth QoE of each
application running on each UE. If the QoE falls beneath a
certain threshold (e.g., 3 secs page load time in case of web
browsing) we deem that particular flow to be inadmissible
in that traffic matrix. This gives us a large dataset of traf-
fic matrices consisting of flows with acceptable as well as
unacceptable QoE. Thereafter, we use a Python based im-
plementation of Admittance Classifier, which does a trace
based learning of ExCR. For each traffic pattern, Admittance
Classifier trains the SVM with an initial set of traffic ma-
trices (bootstrapping phase). In our experiments we observe

that bootstrapping can be done with≈ 50 samples, providing
0.5 – 0.6 precision and recall at the end of bootstrap. Note
that each sample in our evaluation represents a traffic matrix.
As flows enter and leave the network, a new traffic matrix is
recorded and added to the training set. Depending on the ac-
tivity level in a network 50 samples could be observed over
few hours or over a day. In networks with diverse and ac-
tive users, different traffic matrices can be observed quickly,
speeding up the bootstrapping phase in networks where ad-
mission control is most effective.

After bootstrapping phase, Admittance Classifier enters
the Online Learning Phase, where it takes admission de-
cision for each incoming flow. This is the testing phase.
Note that Admittance Classifier also updates its model af-
ter a batch of flows has been admitted. We consider a batch
size of 20 samples for WiFi experiments and a batch size of
10 samples for LTE experiments. We will present sensitivity
results for batch size later in this section.

We also implement two commonly used schemes to serve
as baselines in our evaluation.
(i) RateBased: This scheme considers a purely rate based
admission control. This approach is used exclusively by
many vendors (Cisco [9], Rukus [22]) and industry software
(Microsoft [2]). It assumes the network capacity as C and
rate requirements of each flow f as cf . A new flow g is ad-
mitted in the network only when C-

∑
congoing flows ≥ cg . In

our experiments we set C as the maximum UDP throughput
measured in our WiFi and LTE testbeds.
(ii) MaxClient: This scheme admits up to a maximum num-
ber of flows and rejects all flows beyond that. In our ex-
periments we set the maximum client limit to 10, as in [7]
(Aruba Wireless) or [13] (IBM). This is also the maximum
number of clients in our testbed.

Latency benchmarks: We benchmark the latencies in-
curred by the Admittance Classifiers for our python based
implementation of ExBox, RateBased and MaxClient algo-
rithms. The latency is measured as the time interval be-
tween the instant a new flow arrives and the admission de-
cision (admit or reject) decision is taken on it. We use a
HP ZBook equipped with 16 GB memory and a quad-core
i7 processor for our benchmark study. For both RateBased
and MaxClient the latencies are negligible (≤ 2 ms median
latency). For ExBox, the median latency observed is≈ 5 ms.
Both RateBased and MaxClient do not involve an explicit
training phase. However ExBox involves training Admit-
tance Classifier (SVM based) both at the bootstrap phase and
during online updates. Training the Admittance Classifier
for ExBox with 50 samples takes ≈ 360 ms median latency.
The training latency increases to more than 2 seconds when
1000 samples are considered. This is an artifact of our cur-
rent implementation (e.g., choice of SVM kernel) and plat-
form/libraries. For example, libraries such libsvm written
in C have more a optimized implementation. A recent work
on SVM optimization [36] actually argues that with increas-
ing training size (number of samples) the latency incurred in
building the classifier might actually decrease with the right
implementation. Investigating SVM implementation options

is somewhat tangential to our work. But evidently latency of
the learning technique is a bottleneck in ExBox.

Macro results: We compare ExBox, RateBased and Max-
Client using three well-known performance metrics: viz.,
precision, recall and accuracy. Precision is defined as the
ratio of correctly admitted flows to the number of admitted
flows, while recall is defined as the ratio of correctly ad-
mitted flows to the number of flows that could have been
admitted. Accuracy refers to the overall fraction of correct
decisions made (admit or reject). Intuitively, a high value
of precision indicates that ExBox makes few mistakes in
preserving the network QoE. However, a conservative ad-
mission control approach will also preserve QoE quite well
(e.g., admit very few flows and reject everything else). The
recall metric will catch such overly conservative behavior.

 0.4
 0.6
 0.8

 1

 0 80 160 240

R
ec

al
l

Samples Fed Online (Random)

 0.4
 0.6
 0.8

 1
A

cc
ur

ac
y

 0.4
 0.6
 0.8

 1

P
re

ci
si

on

Ex-Box RateBased MaxClient

0 80 160 240
Samples Fed Online (Livelab)

Figure 7: WiFi testbed results for Random Traffic and
LiveLab traces, compared with baseline

 0.4
 0.6
 0.8

 1

 0 30 60 90

R
ec

al
l

Samples Fed Online (Random)

 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

 0.4
 0.6
 0.8

 1

P
re

ci
si

on

Ex-Box RateBased MaxClient

0 30 60 90
Samples Fed Online (Livelab)

Figure 8: LTE testbed results for Random Traffic and
LiveLab traces, compared with baseline

Figure 7 compares ExBox, RateBased and MaxClient
with both Random and LiveLab traces on the WiFi testbed.

Compared to RateBased and MaxClient, ExBox always has
higher precision (≥ 0.8 mostly) and accuracy (≥ 0.85
mostly), but a lower recall (≤ 0.85 mostly). However, with
more training (i.e., number of samples), its recall catches
up with other approaches. In the context of admission con-
trol, accuracy is an important metric as it captures flows
that have been correctly accepted and flows that have been
correctly rejected, in order to maintain the QoE of existing
users. ExBox has an accuracy of 0.6 with initial bootstrap-
ping and it grows to 0.8 after 160 samples. At the same time,
accuracy of RateBased and MaxClient stays less than 0.7.
Figure 8 shows similar results for the three approaches on
the LTE testbed. Across both networks, the random scheme
shows better results than LiveLab traces, as random scheme
provides more diverse training.

 0

 0.25

 0.5

 0.75

 1

ExBox
RateBased

MaxClient

Ac
cu

ra
cy

Video Conf. Web Streaming

(a) Accuracy in WiFi Network

 0

 0.25

 0.5

 0.75

 1

ExBox
RateBased

MaxClient

Ac
cu

ra
cy

Video Conf. Web Streaming

(b) Accuracy in LTE Network

Figure 9: Accuracy per application type

Micro results: We further compare the performance of
ExBox, RateBased and MaxClient for each application
class. Figure 9 compares the accuracy of video conferenc-
ing, web and streaming for Random traffic on both the net-
works. Here, accuracy is computed as the fraction of flows
of each application which were correctly admitted or re-
jected. ExBox performs better than other baselines for all
applications. Its accuracy for streaming is closer to Rate-
Based as streaming is a rate-sensitive application. But for
delay-sensitive applications such as web and video confer-
encing, ExBox performs significantly better.

Sensitivity to batch size: While the macro-results shown
above consider a single batch-size for updating Admittance

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300

Pr
ec

is
io

n

Samples Fed Online (Wi-Fi)

Batch 10
Batch 20

Batch 40
RateBased

MaxClient

0 50 100 150
Samples Fed Online (LTE)

Figure 10: Sensitivity to batch size: WiFi and LTE

Classifier, we also tested Admittance Classifier with varying
batch-sizes. Figure 10 shows the precision for batch sizes
of 10, 20 and 40. The Admittance Classifier performance is
sensitive to the batch size. Size 20 works better for the WiFi
network while size 10 works better for the LTE network. The
RateBased and MaxClient approaches are not sensitive to
batch size as they do not have any online updates. Thus, we
only present one plot for each of them. Note that Admittance
Classifier has higher precision than others for all batch sizes.

 0.4
 0.6
 0.8

 1

 0 75 150 225

R
ec

al
l

Samples Fed Online (WiFi)

 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

 0.4
 0.6
 0.8

 1

P
re

ci
si

on

0 40 80 120
Samples Fed Online (LTE)

Ex-Box RateBased MaxClient

Figure 11: Admittance Classifier performance when net-
work behavior changes in WiFi and LTE testbeds

Adapting to network changes: In the macro results, we
make sure that the wireless network does not experience
any fluctuations in data rate and latency. Now, we eval-
uate Admittance Classifier when network behavior fluctu-
ates. We run the traffic matrices from both Random and
LiveLab traffic in a throttled WiFi and LTE network (us-
ing tc utility). In Figure 11, we bootstrap the classifier us-
ing 10% data points from the unthrottled network and then
start testing the model from a traffic-shaped network with
a latency of 200 ms. Note that the initial performance is
extremely poor (precision≈ 0.5), however with subsequent
batches the model adapts to the network condition. With
200+ data points in WiFi it catches up to precision level of

 0
 2
 4
 6
 8

 10
 12
 14

 0 0.25 0.5 0.75 1

P
a
g
e
 L

o
a
d
 T

im
e
(s

)

Normalized QoS

(a) Web QoE IQX (RMSE 1.37s)

 0

 5

 10

 15

 20

 25

 30

 0 0.25 0.5 0.75 1

S
ta

rt
u
p
 D

e
la

y
(s

)

Normalized QoS

(b) Video Streaming QoE IQX (RMSE
3.64s)

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

P
S

N
R

 (
d
B

)

Normalized QoS

(c) Video conf. QoE IQX (RMSE
4.462dB)

Figure 12: Fitting the IQX Equation for Web, Video Streaming and Video Conferencing flows

≈ 0.8. ExBox over LTE adapts faster. This shows the neces-
sity of the online updates and how ExBox adapts to fluctuat-
ing environments [57].

Estimating QoE using IQX: As discussed in Section 3,
ExBox uses IQX hypothesis to estimate per-application
QoE. We now show empirical evidence of the same. We use
tc utility to vary the data rate from 100 Kbps to 20 Mbps and
latency from 10 ms to 250 ms in our WiFi network setup. For
each data rate-latency profile we run each of the three appli-
cations defined earlier 10 times on a single client. This is the
training device shown in Figure 5. In every run we record
the relevant QoE metrics on the client and the QoS metrics
on the controller. In our experiments, QoS is modeled as the
ratio of average throughput to delay.

Figure 12 shows the relationship between QoS and
achieved QoE for the Web Browsing app, Video conferenc-
ing app (Google Hangouts) and Video Streaming (YouTube)
app. For each of these applications, we fit the IQX equa-
tion (1) and evaluate the parameters α, β and γ by using
the least squares approach. The three different fits (web,
video streaming and conferencing) show the differing nature
of these applications. The IQX relationship learnt here is
used by ExBox to estimate QoE purely from the network
traces in the simulations in next section. This experiment
demonstrates the suitability of the IQX hypothesis. Differ-
ent applications may have different IQX models that the net-
work administrator needs knowledge of. However this exer-
cise is not prohibitive as the number of popular application
classes within a network (say, an enterprise) is limited. A
more rigorous study of IQX is part of our future work.

6. SCALE UP STUDY
The E-40 eNodeB in our testbed only supports a maxi-

mum of 8 users and the WiFi card on the laptop could not
handle more than 10 users. However, real campus and office
networks can have up to 50 concurrently active users [8]. To
evaluate ExBox in more populous networks, we perform a
scaled up study through network simulator ns-3 [18]. We
simulate both WiFi and LTE networks using ns-3 and feed
in real application traces to generate traffic on these net-
works. As the simulation progresses, we collect QoS infor-

mation and compute QoE using IQX. The network simula-
tion setup and traffic generation are described below.

6.1 Simulation Setup
WiFi network: We simulate an 802.11n 5GHz Wireless
LAN with varying number of clients connected to the In-
ternet through an access point (AP). The AP is connected
to three remote servers (Server 1, Server 2 and Server 3)
through a 1 Gbps link and 0.3 ms delay. We do not consider
wide area network delays in the simulation, as we focus on
the WLAN dynamics alone. With the increasing penetration
of content delivery networks, last-hop networks are becom-
ing more dominant in application performance. Similar to
the testbed study, these simulations also consider three appli-
cation classes: video conferencing, web browsing and video
streaming. So the traffic matrices considered here are in the
space <aweb, astreaming, aconferencing>. For each such traffic
matrix, aweb + astreaming + aconferencing wireless clients are
simulated in the network, each with one flow. One remote
server is assigned to each of the three application classes.
All clients for one application class connect to the same re-
mote server. Note that we do not split the application classes
in different SNR levels as all clients are in high SNR loca-
tion, unless mentioned otherwise.

LTE network: We simulate an indoor LTE network in
ns-3 with an eNodeB having 23 dBm transmit power, con-
nected to the Internet through a Packet Data Network Gate-
way (PGW). The PGW connects to three remote servers,
each supporting one application class. For each traffic ma-
trix <aweb, astreaming, aconferencing>, aweb + astreaming +
aconferencing LTE user equipment (UE) nodes are simulated
in the network, each with one flow. All clients for one ap-
plication class connect to the same remote server. All clients
are in high CQI location, unless mentioned otherwise.

6.2 Traffic Generation
In our simulations, all the wireless clients connect to one

of three remote servers either over WiFi or LTE network.
To simulate a realistic mix of application flows in the net-
work, we need a traffic generator which can accurately sim-
ulate diverse application behavior. As ns-3 does not sup-

port sophisticated traffic generators, we leverage real packet
traces. In the topologies described above, each of the three
simulated remote servers is configured to have a Tap in-
terface [24]. This tap interface connects to the local host
through a bridge. We feed in real traffic traces of differ-
ent application types to these tap interfaces and eventually,
into the simulated wireless network. For Video Conferenc-
ing, we record a packet trace of an ongoing Skype Video
Call and extract 30 seconds of the trace. Similarly, for web
browsing and video streaming, we capture the packet trace
while loading BBC webpage on Chrome browser and while
playing high-definition videos on YouTube, respectively.

For a traffic matrix <aweb, astreaming, aconferencing>,
the traffic generator creates aweb instances of the BBC
packet trace, merges them and injects the merged trace to
the tap interface of Server 1. Similarly, it also creates
astreaming (aconferencing) instances of the YouTube (Skype)
trace, merges them and injects the merged trace to tap inter-
face of Server 2 (Server 3). We use the tcpreplay suite to
modify the packet headers in the real traces to comply with
ns-3 IP and MAC address space. Note that we only use
the downlink flows in our simulation. So for Skype, we only
capture one-way video conferencing traffic.

For brevity, we do not present scale up studies for all traf-
fic schemes discussed in previous section on all wireless net-
works. Instead, we present one scheme and one network for
each scale up study. The results are similar in other schemes.

6.3 ExBox in Mixed SNR Scenarios
All the experiments in the testbed have all the phones

in high SNR location. Since adding the SNR diversity in
the traffic matrices explodes the search space, we perform
these tests in simulation. We run the LiveLab traffic trace
over the simulated 802.11n WLAN. Additionally, for each
new flow, we randomly position the client in a high SNR
(≈ 53 dB) or a low SNR (≈ 23 dB) location. This gener-
ates a large dataset (≈ 21000 samples) of Xm: <aweb,high,
aweb,low, astreaming,high, astreaming,low, aconferencing,high,
aconferencing,low, c, l> for flow m of class c and SNR level
sl. The Ym ∈ {−1,+1} is computed by using the IQX
model. We compare ExBox, RateBased and MaxClient on
this large dataset of mixed SNR flows. Figure 13 shows the
precision results for all three approaches with varying batch
sizes. ExBox gives more than 0.8 precision. This is because
we could bootstrap with a larger training set here, which is
the case in populous, diverse networks. Also note that the
batch sizes in this case are larger than the ones in testbed,
implying less frequent updates to the model. The batch up-
dates further improve the precision to 0.95. The precision
for RateBased stays around 0.65 throughout.

6.4 ExBox in Populous Networks
We simulate multiple traffic matrices with aweb ∈ [0, 50],

astreaming ∈ [0, 50] and aconferencing ∈ [0, 50]. For each
traffic matrix, the simulation runs for 16 seconds and we
record the QoS observed by each flow. Similar to the
testbed study, each run is captured as the tuple Xm :<aweb,
astreaming, aconferencing, j> and label Ym, where j ∈

 0.4
 0.6
 0.8

 1

 0 1000 2000 3000 4000

P
re

ci
si

on

B
at

ch
 4

00

Samples Fed Online

 0.4
 0.6
 0.8

 1

P
re

ci
si

on

B
at

ch
 2

00

 0.4
 0.6
 0.8

 1

P
re

ci
si

on

B
at

ch
 1

00

Ex-Box RateBased MaxClient

Figure 13: ExBox performance with diverse SNR, com-
pared with baselines

 0.4
 0.6
 0.8

 1

 0 200 400 600

R
ec

al
l

Samples Fed Online (Wi-Fi)

 0.4
 0.6
 0.8

 1

A
cc

ur
ac

y

 0.4
 0.6
 0.8

 1

P
re

ci
si

on

Ex-Box RateBased MaxClient

0 200 400 600

B
at

ch
 1

0

Samples Fed Online (LTE)

B
at

ch
 1

0
B

at
ch

 1
0

Figure 14: Precision, Accuracy and Recall for admission
control in ns-3 Wi-Fi and LTE simulations

{1, 2, 3}. Here Ym represents the QoE (calculated from
IQX) of flowm of application class j in the given traffic ma-
trix. Note that Xm has fewer dimensions here than previous
simulations as all clients are in high SNR locations.

To simulate populous networks we only consider traffic
matrices with more than 20 simultaneous flows in WiFi.
From these traffic matrices, we generate multiple random
sets of 800 (Xm, Ym) each for our analysis. Figure 14 shows
the performance of ExBox with initial training using 10%
(80) of the data points. We calculate the precision, accuracy
and recall metrics on each batch of data. The model then
learns from the flows admitted in that batch, as explained
in the previous section. Similar to the testbed results, the
performance of ExBox is sensitive to batch size of online up-
dates. The left half of Figure 14 presents results on WiFi net-
work. ExBox has a good precision rate (≈ 0.9), compared to
RateBased and MaxClient, indicating the model did a right

job if it admitted a flow. However recall being slightly lower
indicates the model behaves conservatively. Note that, like
the testbed, a small batch size of 10 is needed for this net-
work as there is no SNR diversity.

The right half of Figure 14 shows the same analysis for
LTE network with the LiveLab traces. Here, we do not re-
strict the total number of flows to be less than 8. Thus,
we simulate all unique traffic matrices encountered in the
LiveLab traces over LTE network and record 650 different
(Xm, Ym) tuples. With more than 100 samples fed online
the classifier’s precision reaches to ≈ 0.8 and it improves
further on to ≈ 0.9 with 400+ samples fed online. Recall is
≈ 0.75. Similar to our testbed experiments, the Admittance
Classifier performs better in LTE than in WiFi.

7. RELATED WORK
There is a huge body of prior work on admission control

and network capacity modeling. In this section, we place our
work with respect to the current state-of-the-art, which can
be broadly categorized as follows:

Flow classification: ExBox assumes a priori knowledge of
the application class to which a flow belongs. It thus relies
on traffic flow classification techniques. Recent literature
has already explored an array of such classification tech-
niques with modest accuracy figures. Some of them handle
real-time traffic classification using machine learning tech-
niques [30, 27] while some others focus on classifying en-
crypted traffic [32, 49].

QoE as a performance metric: The notion of QoE has
been around for a long time. Chen et al. [37] model Skype
QoE in terms of rate, delay and jitter. Balachandran et al.
leverage Machine Learning to capture cross-layer features
that impact web QoE [28] and video QoE [29, 43]. QoE-
Doctor [38] extends QoE modeling to mobile applications.
However, they require modifications on the device to learn
QoE accurately. Authors in [26] propose to model mobile
application QoE from passive network measurements, but
still require human training to build the model. In this work
we leverage the IQX hypothesis [44] that provides a generic
relationship between QoE and QoS. The strength of IQX
lies in its applicability to different application classes. Our
testbed experiments show that it can learn QoE-QoS rela-
tionship with minimal human involvement.

Capacity and admission control: In the past decade and
half, a significant body of work has been invested in under-
standing capacity regions of various forms of wireless net-
works [65, 51, 45]. However, these studies focus on QoS
as the predominant performance metric. With recent pro-
liferation of the app-based ecosystem we argue QoE as a
more suitable metric to measure network capacity. We are
not alone in this argument. Song et al. [63] proposed a
probabilistic admission control parameter for integrated cel-
lular/WLAN networks by modeling QoE, in terms of delay
and rate, in these networks. However, they require metic-
ulous modeling of traffic arrival and contention procedure
in each network. Similarly, Piamrat et al. [59] proposed

QoE-aware admission control for simultaneous video calls
in 802.11 networks. However, they only consider video calls
in their traffic pattern, which is an over-simplification of the
traffic mix found in today’s networks. In contrast, ExBox
aims to define experiential capacity region for diverse mix
of application flows in dynamic wireless networks. We fore-
see ExBox to be easily deployed in operational networks.

Experience-oriented architecture: Recently, Jiang et
al. [48] have proposed an experience-oriented network
architecture wherein application providers and network
providers collaborate to provide better user experience.
Their work is complementary to ours as they try to dimin-
ish the administrative boundaries in order to guarantee better
QoE to end users.

8. CONCLUSIONS
In this work, we motivate the need to define network ca-

pacity in terms of QoE, and not QoS. We define an experien-
tial capacity region, which consists of flows of diverse appli-
cations and diverse channel quality, all with acceptable QoE.
We propose ExBox, a middlebox which can learn the expe-
riential capacity of a network, through in-network QoE esti-
mation and machine learning. ExBox also adapts to chang-
ing network environments and continues to learn the expe-
riential capacity. Our evaluation in a WiFi testbed and LTE
testbed shows that ExBox correctly admits the flows with a
precision rate of≈ 0.8 – 0.9 and recall rate of≈ 0.6 – 0.8. As
part of future work, we plan to evaluate ExBox on a large
scale testbed with multiple WiFi and LTE cells.

9. ACKNOWLEDGEMENTS
The authors would like to thank Abhinav Parate for help-

ing in the initial problem formulation. and the paper’s shep-
herd Patrick Thiran for guiding the camera-ready version.
This work was partially supported by NSF award AST-
1443951.

10. REFERENCES
[1] 3GPP Specification: Self Organizing Networks.

http://www.3gpp.org/DynaReport/32500.htm.
[2] Admission control in Skype for Business Server,

Microsoft. https://technet.microsoft.com/en-
us/library/gg398529.aspx.

[3] Amazon instant video forum. http://amzn.to/2df0kdy.
[4] Android Debug Bridge (adb).

developer.android.com/tools/help/adb.html.
[5] Android view client.

https://github.com/dtmilano/AndroidViewClient/wiki.
[6] Aruba mobility controllers for next-gen networks.

www.arubanetworks.com/products/networking/controllers/.
[7] Aruba: Working with QoS for voice and video.

http://bit.ly/2eNeGCq.
[8] Benchmark 802.11ac Wave 2 performance.

http://blog.mojonetworks.com/benchmark-802.11ac-
wave-2-performance.

[9] Cisco admission control solutions.
http://bit.ly/261Wx8y.

[10] Cisco network admission control.
http://www.cisco.com/c/en/us/solutions/enterprise-
networks/network-admission-control/index.html.

[11] Cisco SON architecture.
www.cisco.com/c/en/us/solutions/service-
provider/son-architecture/index.html.

[12] E2E Virtual Camera Software.
http://www.e2esoft.cn/vcam/.

[13] IBM admission control solutions.
http://ibm.co/1ZWXBU0.

[14] IP flow mobility and seamless wireless local area
network (WLAN) offload.
ww.3gpp.org/DynaReport/23261.htm.

[15] ip.access:lte. http://www.ipaccess.com/en/lte.
[16] LiveLab dataset from Rice University.

http://livelab.recg.rice.edu/traces.html.
[17] Miercom wireless controller comparative

performance. http://bit.ly/2eNdMWu.
[18] ns-3 simulator. www.nsnam.org.
[19] OpenEPC. http://www.openepc.com/.
[20] Qualcomm extends LTE to unlicensed spectrum to

enhance mobile experiences. http://bit.ly/1XYoJ8i.
[21] Qualcomm WiFi SON.

www.qualcomm.com/videos/qualcomm-wi-fi-son.
[22] Rukus WiFi calling.

http://www.ruckussecurity.com/Wi-Fi-Calling.asp.
[23] The Evolved Packet Core - 3GPP.

http://www.3gpp.org/technologies/keywords-
acronyms/100-the-evolved-packet-core.

[24] Universal tun/tap device driver.
https://www.kernel.org/doc/Documentation/networking/tuntap.txt.

[25] YouTube Android Player API.
https://developers.google.com/youtube/android/player/.

[26] AGGARWAL, V., HALEPOVIC, E., PANG, J.,
VENKATARAMAN, S., AND YAN, H. Prometheus:
Toward quality-of-experience estimation for mobile
apps from passive network measurements. In Proc.
ACM MobiSys 2014.

[27] ALSHAMMARI, R., AND ZINCIR-HEYWOOD, A. N.
Machine learning based encrypted traffic
classification: Identifying SSH and Skype. CISDA 9
(2009).

[28] BALACHANDRAN, A., AGGARWAL, V.,
HALEPOVIC, E., PANG, J., SESHAN, S.,
VENKATARAMAN, S., AND YAN, H. Modeling web
quality-of-experience on cellular networks. In Proc.
ACM Mobicom 2014.

[29] BALACHANDRAN, A., SEKAR, V., AKELLA, A.,
SESHAN, S., STOICA, I., AND ZHANG, H.
Developing a predictive model of quality of
experience for internet video. In ACM SIGCOMM
Computer Communication Review (2013), vol. 43,
ACM, pp. 339–350.

[30] BAR-YANAI, R., LANGBERG, M., PELEG, D., AND
RODITTY, L. Realtime classification for encrypted
traffic. In International Symposium on Experimental
Algorithms (2010), Springer, pp. 373–385.

[31] BARI, F., AND LEUNG, V. Automated network
selection in a heterogeneous wireless network
environment. Network, IEEE 21, 1 (2007), 34–40.

[32] BERNAILLE, L., TEIXEIRA, R., AKODKENOU, I.,
SOULE, A., AND SALAMATIAN, K. Traffic
classification on the fly. SIGCOMM Computer
Communication Review 36, 2 (2006), 23–26.

[33] BERNAILLE, L., TEIXEIRA, R., AND SALAMATIAN,
K. Early application identification. In Proc. ACM
CoNEXT 2006.

[34] BISWAS, S., BICKET, J., WONG, E., MUSALOIU-E,
R., BHARTIA, A., AND AGUAYO, D. Large-scale
measurements of wireless network behavior. In Proc.
ACM SIGCOMM 2015.

[35] CHANDRA, R., AND BAHL, P. Multinet: Connecting
to multiple IEEE 802.11 networks using a single
wireless card. In Proc. IEEE INFOCOM 2004.

[36] CHAPELLE, O. Training a support vector machine in
the primal. Neural computation 19, 5 (2007),
1155–1178.

[37] CHEN, K.-T., HUANG, C.-Y., HUANG, P., AND LEI,
C.-L. Quantifying Skype user satisfaction. In Proc.
ACM SIGCOMM 2006.

[38] CHEN, Q. A., LUO, H., ROSEN, S., MAO, Z. M.,
IYER, K., HUI, J., SONTINENI, K., AND LAU, K.
QoE doctor: Diagnosing mobile app QoE with
automated UI control and cross-layer analysis. In
Proceedings of the 2014 Conference on Internet
Measurement Conference (2014), IMC ’14, ACM,
pp. 151–164.

[39] CHEN, Y., FARLEY, T., AND YE, N. QoS
requirements of network applications on the Internet.
Inf. Knowl. Syst. Manag. 4, 1 (Jan. 2004), 55–76.

[40] CORTES, C., AND VAPNIK, V. Support-vector
networks. Machine learning 20, 3 (1995), 273–297.

[41] DAI, S., TONGAONKAR, A., WANG, X., NUCCI, A.,
AND SONG, D. Networkprofiler: Towards automatic
fingerprinting of android apps. In Proc. IEEE
INFOCOM 2013.

[42] DAINOTTI, A., PESCAPÉ, A., AND SANSONE, C.
Early classification of network traffic through
multi-classification. In Proceedings of the Third
International Conference on Traffic Monitoring and
Analysis (2011), TMA’11, pp. 122–135.

[43] DOBRIAN, F., SEKAR, V., AWAN, A., STOICA, I.,
JOSEPH, D., GANJAM, A., ZHAN, J., AND ZHANG,
H. Understanding the impact of video quality on user
engagement. In ACM SIGCOMM Computer
Communication Review (2011), vol. 41, ACM,
pp. 362–373.

[44] FIEDLER, M., HOSSFELD, T., AND TRAN-GIA, P. A
generic quantitative relationship between quality of
experience and quality of service. Network, IEEE 24,
2 (March 2010), 36–41.

[45] GASTPAR, M., AND VETTERLI, M. On the capacity
of wireless networks: The relay case. In Proc. IEEE
INFOCOM 2002.

[46] HIGGINS, B. D., REDA, A., ALPEROVICH, T.,
FLINN, J., GIULI, T. J., NOBLE, B., AND WATSON,
D. Intentional networking: Opportunistic exploitation
of mobile network diversity. In Proc. ACM Mobicom
2010.

[47] HUANG, N.-F., JAI, G.-Y., CHAO, H.-C., TZANG,
Y.-J., AND CHANG, H.-Y. Application traffic
classification at the early stage by characterizing
application rounds. Inf. Sci. 232 (May 2013), 130–142.

[48] JIANG, J., LIU, X., SEKAR, V., STOICA, I., AND
ZHANG, H. Eona: Experience-oriented network
architecture. In Proc. ACM HotNets 2014.

[49] KARAGIANNIS, T., PAPAGIANNAKI, K., AND
FALOUTSOS, M. Blinc: multilevel traffic
classification in the dark. In ACM SIGCOMM

Computer Communication Review (2005), vol. 35,
ACM, pp. 229–240.

[50] KIM, K. H., AND SHIN, K. G. Prism: Improving the
performance of inverse-multiplexed TCP in wireless
networks. IEEE Transactions on Mobile Computing 6,
12 (Dec 2007), 1297–1312.

[51] KODIALAM, M., AND NANDAGOPAL, T.
Characterizing the capacity region in multi-radio
multi-channel wireless mesh networks. In Proc. ACM
Mobicom 2005.

[52] LASKOV, P., GEHL, C., KRÜGER, S., AND MÜLLER,
K.-R. Incremental support vector learning: Analysis,
implementation and applications. Journal of machine
learning research 7, Sep (2006), 1909–1936.

[53] LEONG, C. W., ZHUANG, W., CHENG, Y., AND
WANG, L. Call admission control for integrated on/off
voice and best-effort data services in mobile cellular
communications. Communications, IEEE
Transactions on 52, 5 (2004), 778–790.

[54] LI, W., AND MOORE, A. W. A machine learning
approach for efficient traffic classification. In 2007
15th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (Oct 2007), pp. 310–317.

[55] MAHINDRA, R., VISWANATHAN, H.,
SUNDARESAN, K., ARSLAN, M. Y., AND
RANGARAJAN, S. A practical traffic management
system for integrated LTE-WiFi networks. In Proc.
ACM Mobicom 2014.

[56] NAGHSHINEH, M., AND ACAMPORA, A. S. QOS
provisioning in micro-cellular networks supporting
multimedia traffic. In Proc. IEEE INFOCOM 1995.

[57] PEFKIANAKIS, I., LUNDGREN, H., SOULE, A.,
CHANDRASHEKAR, J., LE GUYADEC, P., DIOT, C.,
MAY, M., VAN DOORSELAER, K., AND VAN OOST,
K. Characterizing home wireless performance: The
gateway view. In Proc. IEEE INFOCOM 2015.

[58] PENG, L., YANG, B., CHEN, Y., AND CHEN, Z.
Effectiveness of statistical features for early stage
internet traffic identification. Int. J. Parallel Program.
44, 1 (Feb. 2016), 181–197.

[59] PIAMRAT, K., KSENTINI, A., VIHO, C., AND
BONNIN, J. QoE-Aware Admission Control for
Multimedia Applications in IEEE 802.11 Wireless

Networks. In Vehicular Technology Conference, 2008.
VTC 2008-Fall. IEEE 68th (Sept 2008), pp. 1–5.

[60] QIAN, F., WANG, Z., GERBER, A., MAO, Z., SEN,
S., AND SPATSCHECK, O. Profiling resource usage
for mobile applications: a cross-layer approach. In
Proc. ACM MobiSys 2011.

[61] SHAFIQ, M. Z., ERMAN, J., JI, L., LIU, A. X.,
PANG, J., AND WANG, J. Understanding the impact
of network dynamics on mobile video user
engagement. In ACM SIGMETRICS Performance
Evaluation Review (2014), vol. 42, ACM,
pp. 367–379.

[62] SHIN, S., AND SCHULZRINNE, H. Experimental
measurement of the capacity for voip traffic in IEEE
802.11 wlans. In Proc. INFOCOM 2007.

[63] SONG, W., CHENG, Y., AND ZHUANG, W.
Improving voice and data services in cellular/wlan
integrated networks by admission control. Wireless
Communications, IEEE Transactions on 6, 11 (2007),
4025–4037.

[64] TAX, D. M., AND LASKOV, P. Online SVM learning:
from classification to data description and back. In
Neural Networks for Signal Processing, 2003.
NNSP’03. 2003 IEEE 13th Workshop on (2003),
IEEE, pp. 499–508.

[65] TOUMPIS, S., AND GOLDSMITH, A. J. Capacity
regions for wireless ad hoc networks. Wireless
Communications, IEEE Transactions on 2, 4 (2003),
736–748.

[66] VELDHUIZEN, T. Measures of image quality.
CVonline: The Evolving, Distributed,
Non-Proprietary, On-Line Compendium of Computer
Vision (2010).

[67] YANG, B., HOU, G., RUAN, L., XUE, Y., AND LI, J.
Smiler: Towards practical online traffic classification.
In Architectures for Networking and Communications
Systems (ANCS), 2011 Seventh ACM/IEEE
Symposium on (Oct 2011), pp. 178–188.

[68] ZARINNI, F., CHAKRABORTY, A., SEKAR, V., DAS,
S. R., AND GILL, P. A first look at performance in
mobile virtual network operators. In Proc. ACM IMC
2014.

[69] ZHANG, J., CHEN, X., XIANG, Y., ZHOU, W., AND
WU, J. Robust network traffic classification.
IEEE/ACM Transactions on Networking 23, 4 (Aug
2015), 1257–1270.

	Introduction
	Rethinking network capacity
	Experiential Capacity Region

	The ExBox Design
	Admittance Classifier
	QoE Estimator
	Software Architecture

	QoE Management with ExBox
	Network Selection
	Admission Control
	Dealing with Network/App Dynamics
	Scaling to Large Networks
	Flows, Apps and Users

	Experimental Evaluation
	Testbed Setup
	Experiment Methodology
	Evaluation Results

	Scale Up Study
	Simulation Setup
	Traffic Generation
	ExBox in Mixed SNR Scenarios
	ExBox in Populous Networks

	Related Work
	Conclusions
	Acknowledgements
	References

