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ABSTRACT
Spectrum databases used to estimate TV white space availability
often provide inaccurate and largely conservative estimates as they
are primarily based on empirical propagation models. This leads
to ‘loss’ of white space spectrum that is critical in urban areas
with large spectrum demand. While alternatives are possible in
terms of incorporating direct spectrum measurements, the measure-
ment locations must be judiciously chosen so that measurement ef-
fort is not prohibitive. Fundamentally, this boils down to address-
ing the estimation accuracy vs measurement effort question. We
present a rigorous data driven analysis to address this using mea-
surement data collected in parts of New York City metro area. We
show that it is possible to develop models that estimate whether
the current database estimates are reliable in a given location. Fol-
lowing this, we provide a recipe for developing a ‘measurement-
augmented’ spectrum database that takes the help of measurements
where needed and falls back on the current propagation model-
based database technique in the rest of the areas. The final take-
away is that it is possible to improve database accuracy significantly
with only modest amount of measurements.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design Studies, Measurement
Techniques, Modeling techniques, Reliability, availability, and ser-
viceability.

Keywords
TV Whitespace, Spectrum Databases, Propagation Model.

1. INTRODUCTION
According to the rules for white space (WS) spectrum access,

‘secondary’ (unlicensed or lightly licensed) use is allowed only
when it does not adversely affect ‘primary’ (i.e., licensed incum-
bent) communications. To enable this, the recommended solution
by the FCC in connection to TV band spectrum (so called TVWS)
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is to use one of the approved spectrum databases [9].1 All sec-
ondary users are required to consult such a database prior to access-
ing any WS channels for communication. The database uses (i) de-
tailed knowledge of TV transmitter characteristics and (ii) specific
propagation models to estimate the TV signal power at any given
location. This in turn provides the ‘protection contours’ for each
TV channel – secondary operation is allowed only outside these
contours.

Clearly, the accuracy of such databases is crucial for success-
ful operation in the WS. ‘False negative’ estimates by the database
mean that WS cannot be exploited even when it does not hurt
primary communications. This leads to lost spectrum opportuni-
ties. ‘False positive’ estimates, on the other hand, mean that pri-
maries are not protected leading to violation of regulations. Recent
measurement studies have reported that the spectrum databases are
prone to varying degrees of inaccurate estimates [22, 23, 24, 19].
The inaccuracy is somewhat biased towards generating more false
negative errors as opposed to false positives. This is not entirely
unexpected as the databases 1) rely entirely on empirically derived
propagation models and 2) these models are tuned to provide more
conservative estimates of protection regions due to legal issues per-
taining to false positive estimates (more on this in Section 3). The
actual database question aside, multiple measurement studies in the
TV bands also independently point out limitations of propagation
modeling approaches in estimating availability of TVWS channels
for secondary use [11, 16, 22, 23, 24, 19].

Lost White Space: The database inaccuracies lead to a serious
loss of spectrum opportunity in urban regions, specifically in large
metro areas that are also population hotspots: 1) a large number of
TV channels in these regions mean that fundamentally WS avail-
ability is poor [12] and 2) the spectrum demand is large due to
dense populations. Losing spectrum opportunity precisely where
more spectrum is needed does not bode well for the business case
for TVWS. Our measurement study in parts of the New York City
metro area [6] shows that roughly 40%–75% of available WS spec-
trum is lost (Section 2).

1.1 Measurement Augmentation
The problem can be easily remedied if the spectrum databases

can use actual measurements [23, 24] instead of standard prop-
agation models.2 This is viable as the primary occupancy in the
TV bands do not change often and thus the measurements do not
need to repeat frequently in the same location. However, the chal-
lenge here is to limit the spatial extent of such measurements as
1There are several such database providers, e.g., Spectrum
Bridge [7], Google [1], i-Connective [2], Keybridge [4], etc.
2We do not discuss regulatory issues that can arise here; we limit
ourselves to technical issues only.
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Figure 1: Overview of the proposed measurement-augmented
spectrum database approach.

measurements are expensive to the database operator.3 Our goal in
this work is thus to pose a fundamental question: Can the spectrum
database predictions be significantly improved with only a modest
amount of measurements?

We address this question with a data-driven analysis using spec-
trum measurements collected on 30 DTV channels at 5K+ locations
in the NYC metro area - one of the major population hotspots in
US (Section 2). Our specific contribution is a recipe to ‘augment’
current spectrum databases with actual measurement data. Unlike
prior work that uses very extensive measurements to completely re-
place the current propagation model-based databases [23, 24], we
propose a middle ground: measurements are used strategically only
in specific regions; the rest of areas can still use the current database
approach. This strikes a good balance between accuracy and cost in
terms of measurement effort. Figure 1 provides a broad overview.

The centerpiece of the technique is a classifier model (Section 4)
that predicts the accuracy of the current propagation model-based
database estimates using factors that are poorly accounted for in
these models (Section 3). This enables us to separate out the re-
gions where the database accuracy could be poor. We use sparse
measurements followed by standard interpolations in these regions,
but stick to current database estimates in the rest of the areas (Sec-
tion 5). Finally, we show that this approach as a whole is able to
recover a significant amount of lost white space with only modest
measurement effort.

2. MEASUREMENTS
We conducted measurements in two regions within New York

City metro area [6] – 1) in the cities of Hoboken, Jersey City,
Newark and Summit in New Jersey (NJ) and 2) parts of Suffolk
and Nassau counties in Long Island (LI) in New York covering
approximately 250 and 150 sq. kms, respectively. All these re-
gions are urban with significant population and economic activities.
The measurements are taken from the road with a vehicle mounted
spectrum sensor (ThinkRF WSA4000 [8]). We scanned the UHF
spectrum that includes the DTV channels 21 through 51 (512 MHz
- 698 MHz except channel 37 which is used for astronomical pur-
poses). The measurement yielded about 150 K+ data points in ag-
gregate for 5K+ locations sampled. Each data point consists of
a particular channel’s FFT information tagged with corresponding
GPS coordinates.

To set a stage for further analysis, we first determine the WS
spectrum availability based on these measurements. Specifically,
3Various mechanisms are possible including deploying actual spec-
trum sensors [14], deploying sensors in public vehicles [23, 24] or
drive tests like cellular operators, etc. All are expensive in terms of
actual labor or cost.
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Figure 2: Database inaccuracies on a per-channel basis in the
NJ and LI datasets. Note that false negatives are abundant,
though false positives are rare.

we use FCC’s guidelines to determine whether WS channels are
deemed available to portable devices hypothetically operating at
the measurement locations [9]. For such devices, the FCC-
mandated sensing threshold to detect a TV signal is quite low
(−114 dBm). The noise in the spectrum sensor itself can make
it challenging to detect weak TV signals. Even for the high-end
spectrum sensor that we use, capturing a TV signal over a 6 MHz
channel gives rise to overwhelmingly high noise floor compared to
the required -114 dBm threshold. To address the high sensitivity
needed, we leverage a salient feature of TV signals, viz., presence
of a pilot signal at 309KHz offset above the lower edge of the 6MHz
TV channel and the fact that the power of the pilot has a specific re-
lationship to the channel’s aggregate power.4 We zoom into a very
narrow band (first 488KHz of a TV channel) to detect the pilot’s
presence and power with a very low noise and use this to calculate
the channel’s aggregate power. A similar technique on the same
sensor hardware was also used in [23, 24].

In Figure 2 we provide per-channel statistics of spectrum
database inaccuracies assuming measurements as ground truth.
Specifically, Spectrum Bridge [7] is used as the database provider.5

In this figure, false positive (negative) indicates that the database
predicts the channel to be available (not available) for secondary
use, but the measurement detects presence (absence) of signal. True
positive (negative) indicates that the database is correct in pre-
dicting the channel to be available (not available). The database
is checked for each measurement location and the database esti-

4The pilot signal’s power is less than the channel’s aggregate power
by approx. 11.3dB.
5Per FCC, all database providers should use the same modeling
approach and thus should provide identical results.



mate for each channel is classified into one of the four categories
– false/true positive/negative. The figure shows aggregated per-
channel statistics. We make a couple of observations:

1. False negative predictions are frequent, averaging 35% and 32%
for NJ and LI respectively. Also more than 70% of all mea-
sured locations show prediction error in atleast one channel. On
the other hand, false positives are relatively rare (almost absent
in NJ but present in a few channels in LI). This points to the
general conservative nature of the database estimates leading to
loss of WS. According to the measured data, the loss is stagger-
ing: Approximately 75% and 40% of available WS is lost in NJ
and LI respectively due to incorrect prediction by the database,
where the loss is measured as a fraction of channels inaccurately
predicted to be unavailable, aggregated over all locations.

2. The observations in specific categories (false positive, etc.) are
clustered and not randomly distributed.6 This highlights the
possibility that such regions can be identified in advance via an
out-of-band modeling approach. This in turn provides the pos-
sibility of advance partitioning of the entire area of interest into
two types of regions – AreaMeasure (current database approach
is unreliable and measurements are preferred) and AreaModel

(database is reliable). See Figure 1. This forms the essential
basis of the approach we present below.

3. ANALYZING PREDICTION ERRORS
We now follow up on the above observations by taking a deeper

look at possible causes of the database inaccuracies. The first step
is understanding what modeling approach is internally used in the
spectrum databases and the second step is identifying factors re-
sponsible for erroneous estimates.

3.1 Modeling Approach in Databases
Per recommendation from FCC, the approved spectrum

databases use a specific propagation modeling approach (called
F-curves [20]) to identify the protection contours for TV chan-
nels. F-curves are statistical models derived from empirical mea-
surements and are specified by operating band, effective radiated
power (ERP), antenna height above average terrain (HAAT), an-
tenna beam parameters, location and time percentage reliability re-
quirements. For the latter, FCC specifies (50,90).7 F-curves are
used to estimate a contour boundary in each radial direction8 such
that the estimated field strength at the boundary point is 41dBu
(this value is related to (50,90) above). These distances are again
weighted by antenna patterns if they are not uniform.

One reason why F-curves overestimate the contour boundary is
due to the use of ‘average terrain’ instead of fine-grained terrain in-
formation. However, in our experience more advanced approaches
such as the Longley-Rice [13] that do use more granular terrain
information do not appear to fare much better overall. We did an
independent set of analysis to establish this. Figure 3 show scatter-
plots for received power according to the Longley-Rice model and
the measured power for two cases (channel available and not avail-
able). Note very poor correlation for the channel available case (TV
signal absent), while some degree of correlation is indeed present
when the channel is not available (TV signal detected).9 Thus,
Longley-Rice may not be very good in predicting white spaces.
6The analysis of spatial correlation in Section 5 demonstrates this.
7This means that the signal from the TV station is present at 50%
of the locations for 90% of the times within the contour boundary.
8Radial HAAT is generally calculated every 1◦azimuth.
9Not shown here, F-curves show poor correlation in both cases.
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Figure 3: Modeled power according to Longley-Rice vs. Mea-
sured power. Note very poor correlation for the channel avail-
able case (TV signal absent).

3.2 Factor Analysis
With the above understanding, we hypothesize that certain prop-

agation related parameters overwhelmingly influence the database
accuracy. Our goal now is to explore this influence systematically.
We identify three key parameters that have significant influence on
the accuracy.10

Distance from Transmitter: For a given channel, this is the
distance of the nearest TV transmitter operating in that channel.
This parameter is important due to the fact that it is likely that the
database will be able to predict accurately if the nearest transmitter
is too close (channel not available) or too far (channel available)
from the location.

Modeled Power: This represents the estimated received power for
a channel as predicted by the FCC F-Curve Model. Just like above,
too small or too large modeled power indicate that the database is
likely accurate.

LOS Obstruction Length: This is the portion of the ‘line-of-
sight’ from the closest TV transmitter at the specific channel that
is ‘obstructed’ due to terrain irregularity. To understand this con-
struct an imaginary straight line from the transmitter antenna to the
location. Parts of this line could be ‘obstructed’ due to terrain ele-
vations. We are interested in the total such obstruction length. To
determine this, we use elevation profile from NASA’s SRTM 1-arc-
second terrain database (30m resolution) [5].

3.3 Types of Prediction Errors
Figure 4 shows the fraction of locations measured with respect to

each of these parameters for specific accuracy categories (namely,
false positive (FP), false negative (FN), true positive (TP) and true
negative (TN)). NJ and LI data are presented separately for the
purpose of illustration. To understand these plots, consider the
database prediction – channel available or not available. These pre-
dictions can be correct or incorrect. Accordingly, channel available
(not available) decisions contribute to FP and TN (FN and TP) cat-
egories. Thus, if the plot for FP is reasonably separate from that
for TN, it is possible to ‘learn’ where the database is likely to make
incorrect decisions for channel available. Similar is the case for
channel not available. We do see that there is a separation between
at least one of these pairs of plots for all three parameters and some-
times the separation is quite distinct. This indicates that these pa-
rameters could be effective in ‘teasing apart’ locations where the

10We explored several other factors like Antenna Height, ERP etc.,
but their influence seems lesser.
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Figure 4: Influence of three factors, viz., Transmitter Distance, Line-of-Sight Obstruction lengths and Modeled Power on the predic-
tion accuracies.
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Figure 5: Example of a decision tree classifier.

database estimate is likely incorrect. Our general approach will be
to use measurements in these locations as opposed to ‘correcting’
database estimates in some other way.

4. PREDICTING DATABASE INACCURA-
CIES

We use the idea outlined in Section 3 to learn a classifier that
takes the above three parameters as features11 and produces a de-
tection accuracy type (i.e., FP etc) as the output. While various
approaches are possible, we use a Decision Tree Classifier (C4.5)
as the decision boundaries are easily interpretable and thus manual
corrections can be done more easily if necessary. A Decision Tree
classifier produces rule-like constructs: by way of example, if the
distance to the transmitter is more than, say, 100 km and the esti-
mated received power is less than, say, -80 dBm, then it is highly
likely the database is going to be inaccurate. See Figure 5 for an
example.

Challenges: There are several challenges in building a useful clas-
sifier. First, we need to make a decision whether we should learn
a separate classifier for each channel. While a separate classifier

11Note that these parameters come from independent data sets and
do not require measurements.

for each channel may handle frequency specific effects better than
an aggregated classifier over all channels, the former is likely to be
somewhat region specific. If in a different region, where TV chan-
nel occupancy is very different, channel specific classifier may not
work well. We have investigated this aspect at length (not reported
here for brevity) and finally settled on the aggregate classifier. It is
only incrementally worse for the two regions we studied (NJ and
LI), but is much superior (to channel-specific) when the model is
learnt in one region and applied to the other. Second, even within
a region, the amount of training data must be minimized to reduce
measurement effort.

To analyze the above issues, we use a series of cross-validations.
We use small contiguous portions (as opposed to random)12 of
the measurement data for training and run k-fold cross-validations
where the folds are different contiguous partitions of the data set.
We also run cross-validations across the two regions – NJ and LI.
Figure 6 summarizes the results in terms of the expected classifier
accuracy.13

Classifier Accuracy: There are two broad takeaways from Fig-
ure 6. 1) When the model is tested in the same region, the accuracy
is very good with even with small amount of training. Just about
10% training data achieves about 85% accuracy. The cross vali-
dation results across regions (model learnt at NJ and applied to LI
and vice versa) are also encouraging – roughly about 70% accuracy
with about 20% data. Note that the straight line distance between
these regions is roughly 150 km. Though more study from diverse
geographic region is needed to prescribe a guideline for exactly
how much to train, these results show a significant opportunity. In
contrast, existing approaches require training per 100 m [23] thus
requiring several orders of magnitude more effort.

12 Contiguous data collection is much easier than random.
13Note that this is distinct from the database accuracy. This simply
looks at whether the classifier is correctly classifying a test data in
the four categories: FP, FN, TP, TN.
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Figure 7: Accuracy vs. measurement effort.

5. MEASUREMENT AUGMENTATION
We run the Decision Tree classifier trained with 10% of the mea-

sured data on the NJ and LI data sets to partition all locations into
two subsets - AreaModel and AreaMeasure (details in Algorithm
1). In subset AreaModel, the database accuracy is high (TP and
TN). In subset AreaMeasure it is low (FN and FP) and thus pre-
dictions from these locations preferably should come from actual
measurements. Further all locations in AreaMeasure do not need
to be strictly measured – spatial subsampling followed by a suitable
interpolation technique can be used to reduce the measurement ef-
fort (details in Algorithm 2). There is already a growing literature
on this topic specifically targeting radio environment mapping [10,
18, 17].

Accuracy vs. Effort: Figure 7 shows overall accuracy vs effort
for a couple of baseline mechanisms along with the proposed ap-
proach. Instead of showing the channel availability prediction ac-
curacy (as in Figure 2) we show fraction of available channels cor-
rectly identified. The ‘effort’ in the plots here is measured in terms
of number of locations that are actually measured (normalized as a
fraction of all locations). The following cases are evaluated:
(i) Baseline 1: A random set of locations use measurements and

rest use the current database for prediction.
(ii) Baseline 2: A random set of locations use measurements and

the rest uses interpolation for prediction.14

(iii) Proposed technique: Briefly, for each channel the classifier is
used first to partition the universe of locations into AreaModel

and AreaMeasure. Then K locations are picked that belong to
AreaMeasure for the most number of channels. These are actual
measurement locations and K is indicative of measurement ef-
fort. Rest of the locations in AreaMeasure for each channel use

14We use a simple linear interpolation technique called Inverse Dis-
tance Weighting or IDW [3]. [10] has shown linear interpolation
techniques can achieve almost as good performance as more so-
phisticated geostatistical techniques such as Ordinary Kriging [18].
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Figure 8: Moran’s-I statistic representing the spatial autocor-
relation among the measurement locations shown in a per-
channel basis. (The statistic is not calculated for channels lack-
ing enough data points.)

interpolation using the available measurements as in (ii) above.
All other locations (i.e., AreaModel ) use standard propagation
modeling as in current databases. Algorithms 1 and 2 have a
more formal presentation.

Algorithm 1 Measurement area calculation for all channels
1: L ← All discreet locations in rasterized area /*30m x 30m cells*/
2: C ← All Channels under consideration /*21 through 51, except 37*/
3: for all l ∈ L do
4: for all c ∈ C do
5: Featurel,c ←< Distancel,c, Obstructionl,c,ModelPowerl,c >

decision ← CLASSIFIER(Featurel,c) /*Decision Tree*/
6: if decision = TP or TN then
7: Add location l to AreaModel,c

8: else if decision = FP or FN then
9: Add location l to AreaMeasure,c

10: end if
11: end for
12: Add AreaMeasure,c to AreaMeasure

13: end for

Algorithm 2 Channel occupancy decisions
1: K ← EFFORT /*Number of measurement points*/
2: MK ← Most occurring K locations from AreaMeasure

3: Powers(MK) ← Set of measured powers at all points in MK

4: for all l ∈ L do
5: for all c ∈ C do
6: if l ∈ MK then
7: Powerl ← Measure(l) /*use actual measurements*/
8: else if l ∈ AreaMeasure,c then
9: Powerl ← InterpolateIDW (Powers(MK)) /*interpolate

such a point from measured points*/
10: else
11: Powerl ← PropagationModel(l, c) /*use existing spectrum

database propagation model to estimate received power*/
12: end if
13: decisionl,c ← RulesFCC(Powerl) /*apply necessary rules to de-

termine spectrum occupancy*/
14: end for
15: end for

Figure 7 presents the accuracy vs effort of the three techniques
above based on the measurement data. Note that with 0% effort (no
measurement), the overall performance is the same as the current
databases (roughly 25% (NJ) and 60% (LI) of available channels
correctly predicted). The two baseline techniques show incremen-
tal improvement with more measurements. However, the proposed
approach improves in accuracy quickly with more effort, reaching
over 80% with only about 10% effort.



Figure 9: Heatmap showing estimated database accuracy in an
extended region. The region shows eastern part of NYC, Long
Island, parts of upstate NY and CT.

Spatial Clustering: Figure 7 does not show how clustered the ac-
tual measurement points are. In fact, it may appear that Baseline 2
does not do too poorly as it converges quickly as well - though at
a lower rate than the proposed technique. However, in Baseline 2
the locations are random, while they are clustered in the proposed
technique. This saves on actual measurement effort if drive tests
are used. To demonstrate this, we show the spatial autocorrela-
tion property of the measurement points in terms of ‘Moran’s I’ in
Figure 8. Moran’s I [15] is a commonly used measure of spatial au-
tocorrelation. A concept of distance is used to indicate proximity
and is used as ‘weights.’ Moran’s I is defined as:

I =
N

�
i

�
j wij

�
i

�
j wij(xi − x)(xj − x)
�

i(xi − x)2
, (1)

where x is the random variable studied, x being the sample mean,
xi’s are the observations. wij is the weight associated with each
pair (xi, xj) and N is the number of observations. In our case, xi

is either 1 or 0 (depending on whether it is a measurement point),
and wij is the distance between points xi and xj . We see that
Moran’s I is always > 0 and often substantial – between 0.3-0.6,
demonstrating significant amount of spatial auto-correlation. On
the other hand, in Baseline 2, Moran’s I is 0 by definition.15

5.1 Scale-up Study
It will be interesting for the reader to understand what really hap-

pens if we scale up the area of study. To do this, we take a fairly
large, 160 km × 80 km wide region covering part of the New York
City metro area [6] and use the decision tree classifier (we use the
LI based classifier as majority of the scale-up area lies in LI) to
estimate the database accuracy for each channel throughout this
region. Figure 9 shows the accuracy in the form of a heatmap.
The accuracy numbers here indicate the percentage of all channels
that the classifier predicts to be correctly estimated (TP or TN) by
the database. Note the poor accuracy throughout NYC and im-
mediately surrounding areas (large reddish patch on the left). Note
also the general clustering of poor accuracy areas providing a guide
where measurements should preferably be taken. Also, of note the
large swaths of blueish high accuracy areas in most parts of Long
Island and surrounding water. This primarily arises to a relatively
flat terrain there relative to upstate NY and CT where a patchwork
of low accuracy areas dot the map (see the northwest corner). An
operator interested in providing augmented database service in this
region will need to measure only the most red areas either accord-

15Moran’s I can range from -1 to +1; -1 indicates perfect disperson,
0 indicates random, +1 indicates perfect correlation.

ing to a budget constraint, or using a heuristics. A simple heuristics
could incrementally increase the measured area until the interpola-
tion performance converges.

6. RELATED WORKS
Several recent measurement papers study limitations of prop-

agation modeling approaches in detecting channel availability in
TVWS. For example, authors in [16] consider several models, viz.,
Free-Space, Egli and Longley-Rice and show that while the former
models perform poorly Longley-Rice is significantly better when
used with terrain information. However, measurements reported
in [11, 19] have poor experience with Longley-Rice much like our
work. In [22], authors show that available TVWS in indoor vs out-
door locations could be significantly different demonstrating poten-
tial inability of current database systems to expose indoor WS.

Spatial interpolation techniques for radio environment mapping
have been studied with a goal to adequately utilizing sparse spec-
trum sensing (e.g., [18, 10, 21]). Specifically, in [10] authors show
that very few sample points may be adequate when coupled with an
appropriate spatial interpolation technique. However, these points
are not necessarily clustered and so drive tests to measure these lo-
cations can still incur a significant cost. The vScope system [23, 24]
proposes leveraging public transport for spectrum measurements in
TVWS. However, vScope is entirely opportunistic and measures all
locations where the contracted public transport (with on-board sen-
sor) travels. While the power of interpolation techniques has been
demonstrated in [10, 21], neither [10, 21] nor [23, 24] give clear
guidelines about the actual choice of measurement locations for
doing an interpolation. Our approach remedies such shortcomings.

Finally, though not directly related to white space, SpecNet [14]
developed a prototype to collect real time measurements from spec-
trum analyzers around the world put into a networked system.
While such a system may be useful in connection to what we pro-
posed here, the deployment must be strategic and much denser than
proposed in the original paper.

7. CONCLUSIONS
If WS spectrum is to succeed commercially, inaccuracies in

spectrum databases must be addressed. While previous work has
recognized spectrum measurements as a way to address this issue,
our work specifically develops mechanisms to reduce such mea-
surement effort. The proposed approach relies on the current prop-
agation model-driven databases where they are likely to be accurate
and uses strategic measurements where they are not. The experi-
mental results in parts of New York City metro area show that doing
only modest amount of measurements – about 10% (25%) of the
area studied that are also reasonably clustered – can recover above
80% (90%) of available WS.

Open issues do remain that we are pursuing in our ongoing work.
They include 1) understanding how much data is needed to train
the proposed classifier for a very large region, e.g., an entire state
or country; 2) optimizing actual driving routes for measurements
instead of number of locations as done in this paper.
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