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Abstract—The cellular data networks are experiencing a se-
rious capacity crunch in the face of exponential increase in
mobile data traffic volume. New traffic management techniques
are needed to improve network and user perceived performance.
In this work, we consider the existence of a higher-layer, agent-
based scheduling system that could potentially delay scheduling
of low priority flows at peak loads. The priorities are assumed to
be user or application tagged, either automatically or manually.
The general goal is to potentially move the low priority flowsin
time and space opportunistically to reduce the overall resource
needs. We develop and evaluate two scheduling schemes – one
based on a straightforward greedy method that requires real-time
load monitoring and the other based on model-based estimation
of future traffic loads and subscriber mobility based on historical
data. Simulation results using a large-scale cellular network trace
data collected inside a nationwide network show the potential of
these approaches in reducing base station resource requirements.
This indirectly demonstrates that if providers can incentivize sub-
scribers to tag certain flows as low priority, they can potentially
accommodate a significant number of additional subscribersin
the same network without expending any additional resource.

I. I NTRODUCTION

Broadband cellular data networks have become the most
common means of mobile data access. This is fueled by
the availability of low-cost smart phones, tablet, e-reader
and netbook devices with plethora of mobile applications.
A recent study shows that for the last five years, the traffic
volume in cellular data network has doubled in every year
and this trend is expected to continue in the coming days [1].
Accommodating the exponential increase in traffic volume has
now become a challenge for the service providers as increasing
network capacity involves major capital investment in terms of
new spectrally efficient technology, additional spectrum and/or
additional base stations.

As reported in previous studies [2], [3], the load under a
base station in a cellular data network fluctuates during theday,
following a diurnal pattern, very high during the peak period
(mid day) and typically low during the off-peak period (late
night). The difference of traffic volume between peak and off-
peak period is also very high. Due to this high variance of load,
base station resources are under utilized for a significant period
during the day. Dynamic resource allocation can address this
situation. But this does not quite solve the issue of capacity
limitation, as during the peak period all the base stations must
allocate all available resources to accommodate the traffic. We
take the approach of addressing this issue in the higher layer
by shifting some traffic load from peak to off-peak periods in

an opportunistic fashion. The goal is to reduce the peak-to-
average ratio of traffic load in the network, ideally flattening
the load curve as much as possible. This enables the provider
to accommodate more users in the network without investing
in capacity improvement. The basic idea is not unlike recent
efforts in developing smart electric grids [4], [5] where there
is an interest in reducing peak load by shifting load towards
off-peak hours when electricity is cheaper. But in our case,
the temporal shift of the load also prompts the opportunity of
spatial movement considering the mobility of the subscriber.
This should reduce the variance of load under a base station
and also lower the peak of the load curve while serving the
same total load. The service provider can potentially use the
spare resource to accommodate more users in the network.

In this paper, we consider a model where a fraction of data
requests specified by the subscribers can be delayed. Requests
of this category are treated with low priority. Interactive
applications or most of the short-lived flows like mail reading
or http browsing may not fall into this category. Possible
examples of low priority flows are certain types of media
download/upload, P2P flows etc., that can tolerate a reasonable
amount of delay without hurting the user experience any
significantly. The subscriber can specify a deadline by which
he/she wants the service to be provided and network makes
a best-effort to find appropriate spot in time and space to
fulfill the request. The rest of the traffic in the network is
treated as high priority and they are served immediately. This
model allows the network to move around the low priority
traffic both spatially and temporally, and schedule them with
the availability of spare resource of the currently associated
base station of the corresponding subscriber.

The above approach provides two clear benefits: (i) Moving
low priority traffic from a congested space-time point to
another that has the capacity to carry the traffic. This allows
the high priority traffic to be served with better performance.
(ii) Reducing peak resource requirements by removing the load
from the peak period to off-peak period; and thus indirectly
allowing the network to make room for more users.

Our focus in this paper is to evaluate the model described
above and analyze the feasibility of two simple approaches
to schedule the low priority traffic: (i) greedy scheduling
approach and (ii) modeling-based approach. We evaluate the
waiting time of the low priority traffic and also analyze the
effect on high priority traffic. We also investigate how much
the model can reduce the resource requirement in the network.
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Fig. 1. Overall idea of opportunistic scheduling of low priority flows. The
color in each cell indicates the congestion level in that cell. Red means highly
congested and green means no congestion. The trajectory of asubscriber is
shown. The low priority flow is served when the congestion level at the cell
is low.

The evaluation is done using a trace-driven simulation on a
large-scale data traffic collected at the core of a nation-wide
3G network for our analysis. The data set spans one week
in 2007 and consists of all data traffic associated with the
entire subscriber base (in the order of hundreds of thousands)
in a nation-wide network with thousands of base stations.
All generated data packet headers (but not including user
payloads) and various signaling and accounting packets are
captured, archived and later post processed using a tool we
have developed to gather all the flow level information. This
is the same data set we used in our earlier works [3], [6].

The rest of the paper is organized as follows. We describe
our model and scheduling strategy in Section II. We present
our analysis using the greedy scheduling based approach in
Section III and describe the modeling based approach in Sec-
tion IV. We describe the implications both from the perspective
of network provider and subscriber in Section V. We discuss
related work in Section VI and conclude in Section VII.

II. OVERALL APPROACH

A. Model Description

We use an abstract model of the base station behavior to
help us analyze opportunistic scheduling. A number of base
stations covers a geographic region. A subscriber moves in
the network and associates to a single base station at any time
instant. When a subscriber creates a flow, the associated base
station allocates radio resource (channel) for that flow. Here
flow means TCP or UDP flow (upload or download). If the
subscriber moves from one cell to another, hand off takes place
and all the ongoing flows are now served by the new base
station. In the current cellular network design, all regular flows
are treated equally (i.e., high priority in our terminology),
meaning that they need to be served immediately. Base stations
need to be equipped with enough resource to accommodate all
such flows, especially in the peak period. A flow arriving in a
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Fig. 2. CDF of variation of flow duration in the simulation from the trace
of each flow. Here all the flows are treated with same priority.

congested situation either gets dropped or served with a low
performance.

In our model, we introduce a second category of flow
priority. These flows have low priority and can be delayed
and scheduled opportunistically on the resource availability.
Figure 1 shows the overall idea. A subscriber creating a flow
tags it with low priority and informs an agent running higher
in the hierarchy inside the network. This agent also tracks
individual base station loads at a suitable granularity andis
responsible for scheduling the low priority flows. The agent
uses its knowledge of the base station loads and also the
mobility of corresponding subscribers for the actual scheduling
decisions. Note that low priority flows may need to wait for
being scheduled by the agent and even after the start, it may
need to be defered/suspended and resumed later for multiple
times until it is completely served. This means that low priority
flows may be served in chunks, as demonstrated in Figure 1.
The subscriber can also specify a time window for a low
priority flow within which the flow needs to be completed.
The agent considers this time window as a deadline for that
low priority flow and tries to schedule the flow accordingly.

B. Approach

A fraction of the flows created by the subscribers is
indicated as low priority flows. We consider two different
approaches for scheduling the low priority flows.

Greedy Scheduling Approachis a simple approach where
the agent continuously monitors the load of the base station
where the corresponding subscriber of the low priority flow is
associated with and starts the flow whenever there is any spare
capacity available. The idea is very simple, but keeping track
of each of the base stations’ load for a large number of low
priority flows may create an extra overhead of messege passing
on the network. We discuss about this approach in more details
with the results of our simulation run in Section III.

Modeling Based Scheduling Approachschedules the low
priority flows using the predictive model of base station load
and subscriber mobility. It models the mobility pattern of each
subscriber in the network to predic his location. It also models



the load on each base station in the network and determines the
opportunistic time spots of each base station. Using these two
models, low priority flows are scheduled where the scheduling
problem is formulated and solved as a network flow problem.
This approach is comparatively more complex and can suffer
from modeling error. We discuss about this approach in more
details in Section IV.

We investigate how the model helps to reduce the resource
requirement in the network. To evaluate this, we assign lower
capacity to each base station in our simulation run and estimate
the effect on both high and low priority flows. The goal here
is to schedule low priority flows so that high priority flows are
benefitted and low priority flows suffer a reasonable delay. We
evaluate this with both approaches mentioned.

C. Data Set

Our data set provides a range of information for each flow
created by subscribers including the start time, flow duration
in seconds, number of bytes transferred. It also provides the
information of the corresponding subscriber and the base
station where the flow is initiated. It keeps track of the mobility
information of each subscriber irrespective of flow creation.
This lets us know whenever a subscriber changes his current
base station.

We model the capacity,Cj of a base stationj as the
maximum aggregate throughput of the base station observed
during the span of the data trace. This estimation of capacity
of the base station may not be accurate. But at the absence of
the accurate information of the underlying physical resource,
it can provide us an indication of the capacity. This will also
make our model simple. We calculate the capacity for each
base station in the network. Here the capacity of the base
stations are not equal and may indicate much less than the
actual physical resource assigned. Thus the results presented
in our evaluation indicates a lower bound of improvement.

We also model the flows and their resource requirement. Our
data set keeps track of the total number of bytes transferred
and duration for each flow. From this information, we calculate
theaverage throughput, T

avg
i for each flowi. Along with that

our data set also provides themaximum throughput, T max
i

achieved for each flow,i during its life-time under a base
station,j. We consider this as an indication of channel quality
for that flow under that particular base station. Our flow-
model suggests that each flow, scheduled under a base station,
is served with a fraction of its maximum throughput. That
is, a flow i scheduled under base stationj is served with a
throughput ofσT max

ij , where 0 < σ ≤ 1. At an instance
of time, all the flows under a base stationj are served
with same fraction which is obtained using this formulation:∑

i σT max
ij ≤ Cj , 0 < σ ≤ 1. The value ofσ needs to be

changed based on the availability of the resource, specifically
at the arrival and departture of any flow under the base station.
We assume that when a flow is scheduled with some resource,
it is served constantly with the specified throughput until that
rate is changed or the size of the data transmission for that
flow is over the total number of bytes as specified in the trace.
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Fig. 3. Flow chart describing the greedy scheduling approach.

This may not be realistic as in real protocol physical resource
such as channels which are assigned to mobile devices can be
time shared among multiple flows and acquisition of physical
resources should depend on the packet generation behavior of
the flow.

To demonstrate the effectiveness of our capacity and flow
model, we do a sanity checking by a simulation run. We use
the data set without any priority enforcement of the flows and
with full capacity of the base stations observed from the trace.
The goal is to simulate the flows with the arrival time and
transmitted bytes as specified in the trace and investigate the
variation of flow duration in the simulation with respect to
the flow duration in the date set for each flow. Figure 2 plots
the distribution of the variation of flow duration. More than
80% of the flows follow the same timeline as in the trace
and among the rest of the flows, most of them are deviated
marginally. This indicates the effectiveness of the model of
our simulation.

Low priority flows are introduced under a base station
based only on either of the scheduling approaches discussed
in next two sections. Only the spare capacity after the high
priority flows are distributed among all the currently assigned
low priority flows. More on this will be discussed for each
approach in the respective sections.

III. G REEDY SCHEDULING APPROACH

In this section, we describe the greedy scheduling approach.
We also develop a trace driven simulator to evaluate the
approach using our data set described before. Our goal here
is to quantify the benefit that this model provides in terms of
reducing resource requirement using the greedy approach.

A. Approach

The greedy scheduling approach can be described as fol-
lows. This is also shown as flow charts in Figure 3.

• High priority flows are treated just as it is in the current
network design. It is started immediately after it arrives.
All the active high priority flows under a base station
share the total capacity so that each of these flows



is served with its own required capacity based on the
availability.

• Upon arrival of a low priority flow from a subscriber,
the agent checks whether there is any spare capacity
under the base station where the subscriber is currently
associated. If there is no capacity available, the flow is
stored in a queue where all such low priority flows wait
to be served. Otherwise, the flow starts immediately with
the capacity available.

• An active low priority flow is deferred in case of an
arrival of an high priority flow under the same base station
having no spare capacity. The deferred low priority flow
is stored in the queue with its current status.

• For each of the low priority flows waiting in the queue,
the agent always checks for any spare capacity under
the base station where the corresponding subscriber is
associated with. Whenever the agent finds an opportunity
under a base station, it starts a low priority flow from the
waiting list with the capacity available.

• When a subscriber having active flows hands off from one
base station to another, all the active high priority flows
(if any) of that subscriber are first accommodated under
the new base station. It may require to defer a number
of active low priority flows under the new base station
to accommodate the migrating high priority flows. If the
mobile subscriber has any low priority flow being served
by the old base station, the agent decides about that flow
based on the available capacity of the new base station.

We have developed an event-driven queueing simulator
to study the impact of opportunistic scheduling. To classify
flows into high and low priority flows we take the following
approach. We assume that short-lived flows are of immediate
need and cannot be delayed (e.g., http browsing or email read-
ing). On the other hand, the subscriber could be incentivized to
delay long-lived flows (e.g., large download or P2P traffic).We
consider flows longer than 1500 sec as long-lived flows where
as the overall average flow duration among all the flows is 150
sec. In our data set, around 12% of flows are such long-lived
flows. A random subset of flows which is about 8% of all flows
in the network is chosen as low priority for our simulation.

Based on the available capacity of the serving base station,
the throughput of high priority flows varies. As mentioned
in the previous section, each high priority flow is assigned a
fraction, σ of its maximum throughput. In our simulation, a
low priority flow is started under a base station only if all
the current high priority flows are being served with their
maximum throughput, that is,σ = 1 and the base station
still has some spare capacity. The spare capacity of the base
station is distributed among the active low priority flows under
that base station. The number of low priority flows under
a base station is incremented as long as each of the active
low priority flows under the base station achieves at least
its average throughput,T avg

i . Arrival of a new high priority
flow under a base station may need to suspend zero or more
low priority flows depending on the capacity situation. In the
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(a) Average delay of low priority flows.
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Fig. 4. Effect on the low priority flows for the greedy scheduling approach.
75% of the long-lived flows which are 8% of all flows are assumedlow-
priority.

case when there is no active low priority flow under the base
station, the new flow is accommodated only by adjusting the
throughput of other high priority flows, if required. On the
other case, a number of active low priority flows under the
base station is suspended to start the new high priority flow
with its maximum throughput.

Our goal of this evaluation is to investigate how the model
and the greedy approach can reduce the resource requirement
in the network. To do this, we study what would happen to
the incoming flows if the base station capacities were reduced.
We do the simulation study for capacities such as 20%, 50%,
80% of the actual capacity of the base stations as determined
from the trace and also provide the 100% results as the base
case. The idea is to study the impact on the flows with
reduced capacity base stations. If the impact is acceptable,
e.g., low priority flows are not delayed substantially and only
few high priority flows are impacted, this would indicate that
more subscribers could be accommodated with the provisioned
capacity.

B. Simulation Results

With flow prioritization and opportunistic scheduling, it is
possible that high priority flows end early relative to its actual
end time in the trace. This is because they are expected receive
more capacity during service. Low priority flows on the other
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Fig. 5. Effect on the high priority flows for the greedy scheduling approach.
75% of the long-lived flows which are 8% of all flows are assumedlow-
priority. The rest are high priority.

hand are likely to be deferred, possibly multiple times, and
thus would end late relative to its actual end time in the trace.
We use the term ‘delay’ for a low priority flow to indicate the
difference between its end times in the simulation run and the
actual trace (end time in simulation− end time in trace). We
use the term ‘gain’ for the high priority flows to indicate the
same thing, but in the opposite direction (end time in trace−

end time in simulation).

Figure 4(a) shows the effect of greedy scheduling on the low
priority flows for different (reduced) capacity assignments of
the base stations. Note that the average delay of low priority
flows is 1200 sec (20 min) when the capacity of base stations
is made half of the actual. This is comparable to the original
flow duration of long-lived flows in the data set as evident
in Figure 4(b) showing the delay of each flow normalized
by its flow duration specified in data set. On the other hand,
Figure 5 shows the gain of the high priority flows in actual and
normalized fashion. Note that more than half of the flows are
unimpacted and and over one third of the flows show gain in
varying degrees depending on the capacity of the base stations.
A negligibly small fraction of high priority flows are negatively
impacted for capacities 100%, 80% and 50%. This fraction is
only noticeable (about 5%) for the 20% capacity case.
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C. Critique of Greedy Scheduling

While the greedy scheduling approach is straightforward
to explain, the approach as described requires the agent to
monitor the load on the base stations in a continuous basis,
looking for scheduling opportunities. This naturally requires
a significant amount of control information to be passed
around among the base stations and the agent. This could
be a significant overhead on the network, especially during
the peak periods. Managing all the low priority flows in the
network by a single agent may also be a scalability issue.
Also, a low priority flow may suffer from a large number
of suspend/resume operation incurring an extra processing
overhead on the network. This can potentially introduce
thrashing. Much of these issues can, however, be addressed
via well-known techniques, such as choosing more granular
measurement/scheduling intervals to reduce control overhead
and choosing load thresholds to make scheduling decisions
for low priority flows to reduce thrashing. But these can also
negatively impact the performance advantage.

IV. M ODELING BASED SCHEDULING APPROACH

We propose a modeling based approach to address the
practical limitations of implementing the greedy approach
that requires continuous load monitoring. The modeling based
approach relies on the hypothesis that human mobility and
network load are predictable and thus models for them can
be created using historical trace data and off-line analysis.
These models are useful in scheduling low-priority flows.
This strategy completely eliminates the need for any real time
monitoring. To establish the usefulness of this approach, we
first evaluate how much predictability exists in the load and
mobility that can be gainfully exploited.
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A. Profiling Base Station Load

We first determine how frequently periods of opportunity
arise where the base station load is low (low is defined as
25% of the capacity, where the capacity is defined as the
maximum load the base station has seen in the entire period of
the trace). We do this study in the granularity of an hour. The
Figure 6 shows the CDF of the number of these opportunistic
hours of a base station in each day. Note that a typical
base station has at least 16 opportunistic hours in a day and
the behaviour is similar among all the weekdays. Weekends,
as can be expected, provide more number of opportunistic
hours. Now an obvious question is: Is the set of opportunistic
hours of a base station ‘consistent’ (i.e., same hour of day
across days)? The Figure 7 shows the CDF of the number
of consistent opportunistic hours of each base station among
all the 5 weekdays. We kept the weekends out of this as the
nature of load in weekends is different from the weekdays.
We see that a typical base station has 7 opportunistic hours
that are consistent among days. This analysis of base station
load indicates that a plenty of scheduling opportunities exists
for low priority flows and much of it is predictable.

B. Profiling Subscriber Mobility

We model the subscriber trajectories to find out the prob-
ability of a subscriber being at a specific location, that is,in
a specific cell at a given time instance. To do this, we list
different cells where a particular subscriber is observed in the
trace during a particular time period in all 5 weekdays and
calculate the total duration spent in each of these different
cells. Specifically, if the length of the time period islt, then
for each time period,ti of the day, a subscriber is observed
for 5 · lt time as profiling is done using the 5 weekdays in our
data set. For each location,j where the subscriber is observed
in time periodti, we add the time durationsdijk which is
the duration the subscriber is present in locationj at time
period ti in kth weekday of our data set for allk days. We
calculate the probability of that subscriber being in location
j in time periodti as the ratio of

∑
k dijk and 5 · lt. The

distribution is created for each subscriber for each time period
in a day. Figure 8 shows the CDF of probability of a subscriber
being in the most likely location at different time periods.
Here we consider 1 hour time period. We indicate the location
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Fig. 9. Network graph used to solve the scheduling problem using the
Modeling Based Approach.

with highest probability at a time period as the subscriber’s
most likely location at that time. Note that a typical subscriber
is found in his most likely location with probability 0.4-0.6.
We observe that this probability increases during the off-peak
period. This analysis indicates that a subscriber’s location can
be predicted with reasonable accuracy.

C. Scheduling Low Priority Flows

We formulate the problem of scheduling the low priority
flows as Network Flow problem [7] using the profiles created
for each base station and subscriber. Here, we assume that each
low priority flow also has a deadline by which it needs to be
finished. We construct a network graph as shown in Figure 9
using the following steps:

• Each subscriber having at least an unserved low priority
flow is respresented as a nodeui. Each of these nodes
is connected to nodes, marked asfj representing low
priority flows created by the corresponding subscriber.
The weight on this directed edge, denoted asdij is the
estimated number of bytes to serve the low priority flow.

• We create an instancebkt for each base stationbk at time
periodt. Each of these nodes is connected to a sink with a
directed edge with weightckt denoting the spare capatiy
available under base stationbk at time periodt. This is
obtained from the profile created for each base station.

• Nodefj representing a low priority flow created by sub-
scriberui is connected to different base station instances
based on the mobility of the subscriber and the deadline
of the flow. This means thatfj is connected tobkt if
the subscriberui is likely to be under base stationbk

with reasonably high probability at time periodt (t is
within the specified deadline of the flow). The weight of
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Fig. 10. Gain of high priority flows for the modeling based approach.
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Fig. 11. Fraction of low priority flows finishing within deadline.

this edge, denoted asxjkt is a function of the throughput
achieved and the duration of the subscriber’s stay under
base stationbk in period t. This is an estimation of the
number of bytes the subscriberui can transmit during
his stay under base stationbk in period t. This is also
modeled from the historical data.

The agent managing the low priority flows constructs this
graph periodically with all the low priority flows waiting with
their current states and get the scheduling by solving this
as a special case of Network Flow problem where there are
multiple sources and multiple sinks [8]. The subscriber nodes
ui act as source nodes. This formulation makes sure that
base stations do not get overloaded and low priority flows
are scheduled with in the specified deadline. This also enables
that low priority flows can be scheduled in chunks. As the
scheduling is done by the agent periodically, it can cover
up any modeling or predicting error of subscriber mobility
and other. The mobile device with the subscriber informs the
agent about its current location (i.e., associated base station)
whenever there is a handoff. Based on the location of the
subscriber and the computed schedule, the agent starts any
low priority flow that might be waiting.

D. Evaluation

We evaluate the predictive modeling based approach in the
similar manner as we have done it for the greedy scheduling
approach: assigning a lower capacity to the base stations and
analyzing the effects on both high and low priority flows
to demonstrate the reduction in resource requirement by the
approach. Before going into the real evaluation, we model
the load of each base station in the network to predict the
spare capacity at each time slot (one hour in our case). As
our evaluation includes assigning lower capacities to the base

stations, we also need to model the base station load for
each of the lower capacity assignment. For each such capacity
assignment we simulate the network with all flows in the data
set and model the spare capacity in each time slot for each
base station. We also model the mobility of each subscriber
by calculating the probability of the subscriber being under a
base station at a specific hour. For this modeling purpose, we
only use the data set of 5 weekdays from our week-long data.
Week-end data is not deemed statistically meaningful as there
are only two days and their nature substantially differ from
the weekdays.

For a meaningful evaluation, we will need a long term
trace. Since the trace is relatively short (only 5 weekdays),
for evaluation purposes we synthetically augment the trace
using established statistical techniques. The augmented data
considers all the subscribers and base stations from the original
trace data for the weekdays. The data generation is based on
the probability of a subscriber creating a flow under a base
station at a time instance. Specifically, while augmenting the
data set, a flow of a subscriber is randomly selected at a time
instance from the pool of flows the subscriber has created
in the original data set at that time instance in any of the 5
weekdays.

Just like in the earlier case, we identify a fraction of the
long-lived flows which are 8% of all the flows in the synthetic
data set as the low priority flows. For each of these flows,
a deadline is specified picked randomly from an window of
1 to 4 hours beyond the arrival of the flow. Note that the
window of deadline is comparable to the original flow duration
as we are only considering long-lived flows as low priority.
We apply our approach to schedule the low priority flows
using the models created from our original data set. At the
beginning of each hour, we get a schedule of all the low
priority flows that are waiting.1 Note that any low priority flow
arriving in the middle of an hour, will only be scheduled at
the beginning of the next hour. This situation can be improved
by choosing a smaller scheduling interval. After the schedule
computation, the agent will start a low priority flow according
to the schedule at the location of the corresponding subscriber
only if the base station’s current real load is lower or equalto
the predicted load of that base station at that time instance. At
each scheduling event, we consider all the low priority flows:
either scheduled or newly arrived. This helps the approach to
overcome any modeling error.

Figure 10 shows the average gain of the high priority flows
for different capacity assignments of the base stations. The
average gain of high priority flows is around 27 seconds
when the capacity of base stations is made half. This is
similar to what we have observed for greedy approach. This
is understandable as in both cases the high priority flows are
benefiting in similar fashion with more available resources. As
the low priority flows are scheduled by the deadlines, the delay
of the low priority flows may not be interesting to analyze.

1The interval of one hour is chosen to make the computing process simple
and tractable. For practical purposes, the scheduling inteval can be smaller.



On the hand, it may be interesting to see what fraction of
low priority flows gets finished by the deadline. Figure 11
shows about 80% of the low priority flows are finished by the
deadline specified for the case when base station capacity is
made half of its original capacity. This shows the potential
of the scheduling approach. We also investigate what fraction
of each flow served after the deadline. For each of the low
priority flows that can not make the deadline, we calculate the
fraction of flow size in terms of number of bytes served after
the deadline. Figure 12 shows the average fraction of flows
remining after the deadline. Note that the remaining portion
is not significant (about 15%) even when the capacity is made
half.

Note that even with the assignment of full capacity, that is,
with fraction of capacity=1, a small fraction of low priority
flows can not meet the deadline. Our investigation suggests
that this is due to the modeling and prediction error. Moreover,
the deadlines of the low priority flows are picked randomly
and is not correlated to original flow duration.

E. Crtique

The Modeling Based Approach is more practical as it
does not require any real-time load measurement and relies
on historical data to derive load and mobility estimates. It
considers the global network-wide scenario as opposed to the
previous greedy approach where each base station is treated
in an isolated fashion. Many wireless providers do collect
subscriber/base station specific load information in various
forms for network monitoring. Thus, off-line use of such data
to create profiles as used in the above evaluation is entirely
plausible. Scalability of global scheduling can still be anissue.
But the network can always be partitioned in smaller parts and
scheduling can be done in each of these parts independently
to address scalability issues.

V. D ISCUSSION

We now summarize our key observations and identify
important practical implications both from the perspectives of
the network provider and the subscriber:
1) Better Service:Normally subscribers may experience poor
service during the peak periods due to network congestion.
Flows can be dropped or served with very poor rate due to
congestion. A frustrated subscriber can try multiple timesto
initiate communication possibly leading to more congestion.
Existing networks do not have any built-in mechanism
for service differentiation and treats all flows equally. The
proposed mechanisms provide a higher-layer, agent based
mechanism to provide service differentiation based on a
simple prioritization of flows. We show that existing load
can be served even with half the capacity with only modest
delays on the low priority flows and little or no negative
impact on high priority flows, and sometimes with some
positive impact.

2) Subscriber Pricing and Incentivization:Providers are
moving away from unlimited data plans and replacing them
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with tiered plans as cellular data networks are becoming
more popular. This is evidently focused towards managing
the network load better. With the opportunistic scheduling,
the providers could provide incentives to subscribers to tag
(automatically via apps, or via a profile driven approach, or
even manually) flows as low priority. A possible incentive
could be that low priority flows are not metered to count as
a part of total data usage by the subscriber. This provides a
semblance of unlimited data plan to the subscriber and may
attract more customers to the provider’s network.

3) Reducing Resource Requirement:Our analysis with
both the approaches shows that the resource requirement of
base stations can be reduced significantly considering only
a small fraction of flows with low priority. We believe that
this can be reduced even more if the fraction of low priority
flows increases. The service provider can utilize the spare
capacity to accommodate more high priority flows, in other
words, more new subscribers in the network.

VI. RELATED WORK

Our work in this paper has some level of similarity with
the broad topic of quality of service scheduling and load
balancing, as we propose to move low priority flows both
spatially and temporally. This general idea has been widely
used where wireless resources are redistributed in form of



channel assignment rather than traffic [9], [10], [11]. A large
body of work on scheduling approaches on link layer is also
available [12], [13], [14], [15]. In contrast, our work deals with
the load shifting problem at a higher layer and at the flow level.
We focus on scheduling of flows, specially low priority flows
either in parts or in whole ignoring the low level issues suchas
power, interference, radio resources, packet level scheduling.
Similar load shifting studies have been done in other contexts,
such as power savings (see, e.g., [16]).

There are different pieces of work dealing with the priority
scheduling in wireless networks. The authors in [17] have
proposed a technique to set priority among the source stations
in ad hoc network. The authors in [18] have devised an
distributed priority scheduling in packet level for the nodes
in ad hoc networks. The authors in [19] have modeled the
arrival of flows in a base station as a queueing model with
priority set between its own flows and flows arrived because
of handoff. Our work is different from these set of works
as we set priorities on the flows by using application layer
information and deal with the opportunistic scheduling of low
priority flows. A similar work, but in a different context has
been done targeting TCP, where the authors have developed
a variation of the regular TCP, called ‘TCP-low priority,’ in
order to to utilize excess network bandwidth distributedlyas
compared to the fair-share bandwidth in regular TCP [20].

VII. C ONCLUSION

In this paper, we have explored an avenue to reduce the
peak load on cellular data networks. The idea is to treat certain
flows as low priority and delay scheduling such flows if the
base station has reached its capacity limits. Low priority flows
are to be scheduled opportunistically based on the available
capacity. The main goal of this model is to move traffic from
the peak period to off-peak period that potentially reduces
the average-to-peak ratio of load under base stations. We
have presented two approaches to schedule the low priority
flows. The first one is a straightforward greedy approach, but
needs continuous monitoring of base station load in order
to determine scheduling opportunities. The second one is a
modeling based approach where models are created to predict
subscriber location (base station) and base station loads based
on historical data. This approach reduces the need for mon-
itoring, but can potentially suffer from inaccurate estimates.
Our analysis indicates that the capacity requirements at the
base station can be reduced significantly – by as much as a
factor of two – with only modest delays on the low priority
flows. If low priority flows that those that are long-lived and
delay tolerant such delays would be perfectly acceptable to
the applications, but would be beneficial for addressing the
data overloads in base stations. Further, this will help the
providers to accommodate more subscribers without increasing
network capacity. Our future work will also involve incentive
and pricing schemes to make this realistic. The future work
will also consider the design of the agent-based system thatcan
perform the opportunistic scheduling proposed in this study.
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