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Abstract—We conduct a detailed measurement analysis to
investigate the spatial characteristics of network resource usage
using a large-scale data set collected ‘in situ’ in a nationwide
3G cellular data network. The data set spans over thousands
of base stations. We first characterize the spatial correlation in
radio resource usage using different statistical techniques. The
analysis shows existence of significant spatial correlation that
varies during the day, peaking during the middle of the day and
waning in the middle of the night. We also use the notion of
spectral clustering to show how base stations can be clustered
based on how correlated they are in terms of radio resource
usage. We show that this produces spatially connected clusters.
We also show that only a few clusters exist when clustered
optimally. Finally, we use the concept of Granger causality to
understand the underlying functional connectivity and flow of
influence in the network. We show that roughly one-third of
neighboring base station pairs exhibit statistically significant
Granger causality, and long causal paths exist in the network.
Our observations can lead to development of new techniques for
network monitoring and resource management in future cellular
data networks.

I. INTRODUCTION

Broadband cellular networks are emerging to be the most
common means for mobile data access world-wide. 3G net-
works such as narrow-band EV-DO Rev. A and wide-band
CDMA (W-CDMA) based HSDPA/ HSPA are now common-
place. Higher capacity networks such as LTE and WiMax
are also emerging. Various predictions from industry analysts
indicate that the volume of data through cellular data networks
will increase exponentially in near future [3]. While operators
are scrambling to add capacity, there is an apparent lack of
understanding of the nature of mobile traffic in the large scale,
except a few very recent papers [26], [20], [21]. We posit
that understanding of mobile data traffic via measurement
and analysis is critical for the resource management in the
wireless access networks. In this work, our specific focus is on
‘spatially significant behavior’ in terms of the resource usage
on the network infrastructure (i.e., cells or base stations (BS)).
Our hope is that our analysis will lead to a better understanding
of such behaviors prompting new resource planning, spectrum
allocation and network design techniques.
In our previous work, we have studied the traffic dynam-

ics from subscriber and network perspectives as well as its
impact on spectrum allocation by conducting a measurement-
driven analysis of the data traffic collected at the core of
a nation-wide 3G network [20]. Our focus in this paper is

to continue analysis on the same data set, but focus on the
spatial properties and causal relationships in the network. Our
goal is to provide answers to important questions regarding i)
how, or if at all, radio resource usage at base stations are
spatially correlated, ii) how base stations can be clustered
based on the similarity of their resource usage patterns, and iii)
whether causal influence exists in the network in that a base
station influences the load on other neighboring base stations.
These questions are important from the network providers’
perspectives specifically in the context of resource (including
spectrum) management and planning.
Our data set spans one week in 2007 and consists of all data

traffic associated with close to one million mobile subscribers
in a nation-wide network consisting close to ten thousand
base stations (both are ballpark numbers).1 All generated data
packet headers (but not including user payloads) and various
signalling and accounting packets are captured, archived and
later post processed using a tool we have developed.2
The reminder of the paper is organized as follows. Section II

focuses on the spatial correlations among base stations. We
present an optimal clustering of the base stations based on their
resource usage in Section III. In Section IV, we investigate the
underlying causal structure of the network. Section V describes
the related work, and Section VI concludes the paper.

II. SPATIAL CORRELATION
We study different techniques to understand the spatial

characteristic in cellular network. The results indicate that
there is significant spatial correlation in the network. We also
study two metrics representing network resource usage to use
in our analysis.
Traffic load in terms of bytes is the most used metric to

describe resource usage in a network. In 3G cellular net-
works, another metric, ‘airtime’, can provide a more realistic
indication of spectrum usage. In the commonly used 3G
standards (3GPP) [5] or 3GPP2) [4]), a subscriber requests
and is in turn allocated a radio channel whenever it has
data to send. The allocated radio channel is revoked by the

1Though load volume has increased recently compared to 2007, we believe
that the general trend should still hold for more recent data.
2For proprietary reasons, we are unable to provide further details about the

nature of the 3G network, network location, data set, packet capture and post-
processing techniques. This is not unusual in recent published network-wide
studies [26]. In any case, the missing details are not relevant to understanding
our analysis for commercially operated networks.
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Fig. 1. CDF of cross-correlation between pairs of base stations (all pairs
as well as pairs within different ranges) based on airtime for different
summarizatio granularity.

network when the subscriber is dormant for a certain period,
modeled using the so-called ‘inactivity timer’ (typically about
10 seconds) [11]. The inactivity timer is configurable for
different networks [5], [4]. A subscriber can go between active
and dormant state multiple times within a single mobile IP
session. We refer the amount of time a subscriber holds onto a
radio channel (regardless of whether it actually communicates)
as the ‘airtime.’ Effectively, the airtime gives us the actual
amount of time a subscriber uses radio and spectrum resources.
Given this background, we use airtime for our analysis as

it is more directly related to the radio resource usage for
the current generation networks. Further exposition of traffic
load vs. airtime question is left for a different work. An
interested reader can also refer to [21] for existing studies
in this regard. We will use the time series of airtime (sec)
for two summarization granularities: 1 hour and 10 mins, for
each base station for the entire 7 days period. The goal of
using two different granularity is to check whether the spatial
characteristics depend on the summarization interval. Because
of space limitations and also somewhat similar nature of the
resulting plots, we will sometimes present the 1 hour data only
in the plots.
We will now use the concept of cross-correlation to in-

vestigate the nature of spatial correlation of resource usage
in the network. Cross-correlation is a standard statistical
method of estimating the degree to which two time series
are correlated [2], [9]. We compute the cross-correlation of

zero lag between various pairs of base stations using the
time series of airtime. Figure 1 shows the CDF of cross-
correlation for all pairs of base stations as well as pairs of base
stations within different ranges for both 1 hour and 10 mins
granularities. Note that cross-correlation, in general, between
pairs of base stations is relatively high with the 1 hour interval
showing a somewhat higher cross-correlation (median around
0.55 for 1 hour interval and 0.4 for 10 min interval). Also,
when categorized into groups of base stations that are within
different distances from each other, closer base stations show
significantly higher cross-correlation. For example, for base
stations that are within 2 miles from each other the median
cross-correlation for 1 hour interval is around 0.7.

III. CLUSTERING BASE STATIONS
One can think of the pairwise cross-correlation as a

similarity measure between base stations. It will be interesting
to find out whether we can cluster base stations based on this
measure and how such clusters look. The base stations within
each cluster then exhibit similar behavior in terms of resource
usage. Understanding the nature of such clusters can help the
network provider in resource planning, as the provider now
can think in terms of clusters or groups instead of individual
base stations. The spatial nature of such clusters would be also
interesting. For example, if the clusters form large connected
components, then it demonstrates spatial significance. This has
significant implication in terms of spectrum allocation. This,
for example, shows that one can find large geographic regions,
as opposed to base stations, that have correlated resource usage
behavior.
We use ‘spectral clustering’ for clustering base stations.

Spectral clustering is a powerful technique to partition points
(in our case, base stations) into disjoint clusters such that
points in the same cluster having a high degree of similarity
(i.e., correlation) and points in different clusters having low
degree of similarity [19], [27], [7]. The clustering algorithm
works on the basis of a ‘similarity matrix.’ In our case, the
similarity matrix is constructed using the pair-wise cross-
correlation values for all pairs of base stations, thus forming
a matrix.
We use the spectral clustering technique as presented

in [19], [27]. The limitation of this technique is that the
number of desired clusters needs to be specified. To compute
the ‘optimum’ number of clusters, we follow the technique
proposed in [27], where the algorithm self-tunes itself.
We get 4 clusters as the optimum for hourly data and 5

clusters for 10 min interval data. As the results for both the
intervals are somewhat similar, we only show the results for 1
hour interval. Figure 2 shows the clustering output for a sample
geographic region of size 110 mile × 110 mile. The map is
partitioned into Voronoi cells. Each Voronoi cell approximates
the geographic region of one base station’s coverage. The color
of each Voronoi cell indicates its cluster. The Voronoi cells
widely vary in size – denser in downtowns/city centers and
sparser in suburbs. We have also provided zoomed-in versions
of two of the denser areas in the map.
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Fig. 2. (a) Spectral clustering of base stations in a 110 mile× 110 mile region shown by coloring of the corresponding Voronoi cells. Four different colors
represent four clusters. (b) and (c) are the zoomed-in versions of the densely deployed base stations in the two areas indicated by red dotted rectangles in (a)
on the left and right side, respectively.
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Fig. 3. CDF of the distance between
two neighboring base stations in each
cluster.
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Fig. 4. Fraction of neighbor pairs
that are in the same cluster, catego-
rized on distance.

Visual inspection of these colored maps reveals some degree
of spatial connectedness of the clusters. Particularly, the ‘blue’
and ‘cyan’ clusters exhibit significant connectedness. Also,
note that the ‘blue’ cluster is quite prevalent in the dense
(downtown) areas, followed by the ‘cyan’ cluster. The sparser
areas, on the other hand, have contributions from all clusters,
though ‘cyan’ appears somewhat more prevalent. Figure 3
shows the CDF of the distances between the neighboring base
stations in each cluster. The same cluster color is used as
before for easy readability. Note that the ‘blue’ cluster is the
most densely packed (small cells). The ‘brown’ and ‘yellow’
clusters are mostly concentrated in the suburbs and thus less
densely packed (larger cells). This indicates that there is some
relationship between cell size and the cluster it belongs to.
There is a tendency of cells of similar sizes to cluster together.
Finally, to further analyze the spatial connectedness of the

clusters, we investigate the probability of a neighboring pair
being in the same cluster. Overall, about 40% of the neighbor
pairs are grouped in the same cluster. We also calculate this
probability for neighbor pairs at different distances. Figure 4
shows that the neighbors that are geographically closer have a
higher tendency to be in the same cluster (upto almost 50%).

IV. CAUSALITY

From correlations, we turn to functional influences in this
section. An important metric to understand the underlying
functional connectivity in the network is the ‘causal influence’

among the base stations. To keep the computational require-
ments reasonable, we do this investigation among the neigh-
boring base stations only. The causality relationship among the
neighboring base stations can be helpful in predicting the base
stations’ loads, and thus allocate the spectrum accordingly in
advance. While there are many avenues to pursue this, we use
the notion of Granger causality [13], a statistical concept used
to measure causality between a pair of time series.

A. Granger Causality
Granger causality (G-causality) determines whether one

time series is useful in forecasting another [13]. According
to G-causality, one stochastic variable X2 ‘Granger-causes’
another stochastic variable X1 if the information in the past
of X2 helps predict the future of X1 with a better accuracy
than is possible when considering only information in the past
of X1 alone [13], [24]. In other words, there is a Granger
causality fromX2 toX1, ifX2 provides statistically significant
information about the future value of X1. Such causality
relation is not symmetric, meaning that ‘X2 Granger-causes
X1’ does not necessarily imply ‘X1 Granger-causes X2’.
Granger causality was originally used in the field of eco-

nomics to study the relationship between different economic
variables such as GDP, oil price, stock market price, unem-
ployment rate and so on [12], [15]. Recently there has been
a growing interest in the field of neuroscience for using G-
causality to identify causal interactions in neural data (see,
e.g., [23], [25]). Use of Granger causality in communication
network measurement and analysis is, however, rare. The lone
example we have found is a recent study using Granger causal-
ity to understand the relationship between building occupants’
energy usage and their IP traffic [18].
We now present the formal definition of Granger causality.

Suppose, we have two time series X1(t) and X2(t) both of
length T . We can describe the two time series using a bivariate
autoregressive model [24]:

X1(t) =

p∑

i=1

A11,iX1(t − i) +

p∑

i=1

A12,iX2(t − i) + ε1(t).

X2(t) =

p∑

i=1

A21,iX1(t − i) +

p∑

i=1

A22,iX2(t − i) + ε2(t).
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Fig. 5. CDF of model order for each pair of base stations.

Here, p < T is the maximum number of lagged or past
observations of X2 (or X1) used to predict the current value
of X1 (or X2) at time t. It is called the model order and
is provided as a parameter to the model. There are different
criteria to determine the appropriate model order, p, so that
the data can be represented correctly. Among them, Bayesian
Information Criterion (BIC) [22] or the Akaike Information
Criterion (AIC) [6] are mostly used. The matrix, A = {Amn,i}
contains the model coefficients and ε1 and ε2 are the pre-
diction errors or residuals. By definition, X2(X1) Granger-
causes X1(X2), if all the coefficients A12(A21) are non-
zero (in other words, if the variance of error term ε1(ε2)
is significantly reduced by the inclusion of X2(X1) in the
first (second) equation). It is important to check whether the
causality is statistically significant or not. This can be done
using the F-test [24]. To become statistically significant the F-
statistic value should be greater than a critical value of the F-
distribution for some desired significance threshold, between
0 and 1. A significance threshold closer to zero indicates a
stricter test.
In our context, the time series for airtime consumed for

a pair of neighboring (in the Voronoi sense) base stations
describe the behavior of the two variablesX1 andX2. We have
used the ‘Granger Causal Connectivity Analysis’ toolbox [24]
for MATLAB for our analysis. Akaike Information Criterion
(AIC) is used to find the model order p. For the statistical
significance test we use 0.05 as the critical value. We test
the causality for every neighboring pair of base stations in
both directions. In our analysis, 32% of the neighbor pairs
show significant causality at least in one direction for 1 hour
interval data. This number increases to 40% when airtime
is summarized to 10 min interval. One can conclude that
roughly for one third of the neighboring base station pairs
there is casuality at least in one direction that is statistically
significant. Figure 5 shows the distribution of model orders for
each pair of base stations. Note that model order is generally
low (median is 5-7) for both the intervals.
To understand the causal properties of the network as a

whole, we define a causality graph using the pair-wise causal
relations [18]. The Granger causality graph is a directed graph
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Fig. 6. CDF of unit causal density of each base station.

G = (V, E) where V is the set of vertices, E is the set of
edges.Each base station in the network becomes a node in the
graph. There is an edge from node a to b in the graph, that
is (a, b) ∈ E, if the corresponding base stations are neighbors
in the voronoi construction and there is significant Granger
causality from a to b. The causal graph allows us to explore
an interesting set of causal properties [24] that we will describe
now.

B. Causal Density
The causal density of the dynamics of a system is a global

measure of causal interactivity [24]. It is a single index
showing the mean causality over the whole network. High
values of causal density indicate that the network elements
are globally coordinated in their activity. It is defined as
the average G-causality over all the pairs of base stations
considered. Causal density bounded in [0,1] gives the average
count of significant Granger causality over the whole network.
The causal density can be defined using the causality graph
as follows:

Causal density =

∑
a∈V

∑
b∈V −{a} I[(b, a) ∈ E]
∑

a∈V |Na|

where Na defines the set of neighbors of base station corre-
sponding to node a in the voronoi sense and I is the indicator
function. In our analysis we get causal density equal to 0.322
and 0.4 for 1 hour and 10 min interval data, respectively. This
indicates existence of statistically significant G-causality on
average.
A similar term, unit causal density can be defined to find

the interaction locally for each base station [24]. This indicates
how a base station is causally involved with its surrounding
base stations. It is the sum of causal interactions around a base
station normalized by its number of neighbors. A node with
high unit causal density can be viewed as causal hub. Figure 6
shows the distribution of unit causal density. The median of
causal density is 0.5 (0.7) and around 20% (40%) of the base
stations have causal density greater than 1 for 1 hour (10 min)
interval, which indicates significant G-causality with at least
50% of neighbors in either direction.
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C. Causal Flow and Causal Path

It is interesting to explore which base stations produce
more causal influence on its neighbors and which are the
sink base stations, i.e., are mostly influenced by its neighbors.
The concept of causal flow is used to discover this. Causal
flow of a base station is the difference of causal interaction
by it to its neighbors and causal interaction pointed to it by
its neighbors [24]. In the context of the causality graph, the
causal flow of a node, a is the difference between its out-
degree (number of edges from node a) and in-degree (number
of edges into node a). A node with highly positive causal flow
can be viewed as causal source and highly negative causal
flow can be viewed as causal sink. Figure 7 shows the CDF
of causal flows of the base stations in our network. It shows
that about 30% of the base stations have large causal flow –
either positive (≥ 2) or negative (≤ −2). This observation is
similar for both the intervals.
Next we investigate how the influence from one base station

propagates or flows in the network. The paths in the causality
graph indicate these flows. This somehow indicates the order
in which the forecasting and resource allocation should be
done for the base stations in the network. We define the causal
path as a path in the causality graph. We enumerate all such
causal paths in the causality graph. Figure 8 shows the CDF
of causal path length in the causality graph for both intervals.
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Fig. 9. (a) CDF of average absolute error percentage in prediction and (b)
CDF of improvement in prediction.

It shows the presence of very long paths in the graph. The
median is around 15 and the 90-percentile path length is 37.
In our future work, we plan to investigate whether the

causal flow properties as well as the causal paths have any
‘out-of-band’ property. We are interested in identifying the
causal sources and sinks on the map and correlating them with
various forms of GIS data. We also like to investigate whether
causal paths follow major roadways or neighborhoods with
special properties.

D. Load Prediction using Causality Relations

Recall that a base station’s load can be predicted better using
the past information of other base stations that ‘Granger-cause’
the first one. Here, we show how knowledge of causality
improves prediction. To do the prediction, we use the Auto-
regressive Moving Average (ARMA) [1] model. We only use
the one-hour interval summarization data. First, for each base
station we create the model using its own load of the first
4 weekdays and predict the load of each hour of the fifth
weekday of our data set. Next, we do the same using the
past load of all the neighboring base stations with causal
relationship along with its own history. Figure 9(a) shows
the CDF of average absolute error percentage in prediction of
each base station using both the techniques, while Figure 9(b)
shows the CDF of improvement in prediction (the difference
of average absolute error) of each base station. The plots show
significant improvement in prediction when causal influences
are taken into account.

V. RELATED WORK

Relatively few papers have analyzed cellular network char-
acteristics using a large scale measurement as this. The authors
in [14] have shown the distribution of voice call durations
analyzing the call logs from a cellular GSM provider. In
a recent work [8], the authors have developed a tool to
generate synthetic mobile network traffic using different data
sets and models providing partial information about mobility
and calling patterns. The authors in [10] have investigated
some aspects of human dynamics and social interactions
using large scale mobile phone records. The authors in [21]
have characterized the settings of operational state machine
that guides the radio resource allocation policy in a UMTS



network. They have used actual cellular data traces for the in-
vestigation. The authors in [16] have analyzed customer tickets
collected from a large cellular network to identify potential
network problems. The authors in [17] have grouped users
and browsing profile simultaneously using real mobile network
data collected from a large 3G cellular service provider. The
authors in [26] have presented a large scale measurement
analysis to characterize the primary usage in cellular voice
network. They have investigated the spatial correlation in the
network but in a limited scope. In our earlier work [20] we
have used the same data set as in this paper and analyzed
individual subscriber behaviors, subscriber mobility, and base
station traffic dynamics at length. We also investigated some
limited amount of spatial correlation properties in [20].

VI. OBSERVATIONS AND CONCLUSION

In our knowledge, our work is the first major study in
measurement analysis of a large-scale 3G cellular data net-
work with specific focus on spatial correlation and causality
properties. We have made several important observations that
have implications in network resource managament:

1) There is a significant amount of spatial correlation
for base stations that are in close proximity. These
correlations are time sensitive. They increase during high
traffic times (midday) and fall during low traffic times
(midnight).

2) Spectral clustering based on cross-correlation shows that
cells of similar sizes and in the same neighborhoods have
a tendency to be clustered together. Also, the number of
clusters was found to be small.

3) There is a statistically significant causal structure in the
network affecting roughly one-third of the base stations.
Causal paths tend to be long, indicating long chains of
influence in the network.

The above observations can help develop future analysis
and forecasting tools to better provision the network, and for
better spectrum and radio resource management and planning.
For example, spatially significant correlation in the network
load indicates that for many monitoring purposes it may be
sufficient to sample loads sparsely across time and space.
Since there are only few clusters, these techniques can be
made quite attractive. This will in effect reduce the network
monitoring burden on the part of the operator. Existence of
causal influence between neighboring base stations indicates
that load forecasting techniques need to use past loads of
neighbors for better prediction. Such forecasting may be useful
in various resource management decisions, including spectrum
management and energy conservation. The model order is
typically small, meaning that one does not need to go too
much into the past and thus archiving burden is not significant.
Further, the existence of long causal paths is interesting and
needs to be examined carefully with respect to available out
of band information, such as nature of neighborhoods.
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