
Passive Measurement of Interference
in WiFi Networks with Application

in Misbehavior Detection
Utpal Paul, Anand Kashyap, Ritesh Maheshwari, and Samir R. Das

Abstract—We present a tool to estimate the interference between nodes and links in a live wireless network by passive monitoring of

wireless traffic. This tool does not require any controlled experiments, injection of probe traffic in the network, or even access to the

network nodes. Our approach requires deploying multiple sniffers across the network to capture wireless traffic traces. These traces

are then analyzed using a machine learning approach to infer the carrier-sense relationship between network nodes. This coupled with

an estimation of collision probabilities helps us to deduce the interference relationships. We also demonstrate an important application

of this tool-detection of selfish carrier-sense behavior. This is based on identifying any asymmetry in carrier-sense behavior between

node pairs and finding multiple witnesses to raise confidence. We evaluate the effectiveness of the tool for both the applications using

extensive experiments and simulation. Experimental and simulation results demonstrate that the proposed approach of estimating

interference relations is significantly more accurate than simpler heuristics and quite competitive with active measurements. We also

validate the approach in a real Wireless LAN environment. Evaluations using a real testbed as well as ns2 simulation studies

demonstrate excellent detection ability of the selfish behavior. On the other hand, the metric of selfishness used to estimate selfish

behavior matches closely with actual degree of selfishness observed.

Index Terms—802.11 protocol, hidden Markov model, MAC layer misbehavior, interference

Ç

1 INTRODUCTION

POOR WiFi performance is often attributed to wireless
interference in highly loaded networking scenarios [1],

[2]. While a lot of research has been conducted in under-
standing wireless interference in a theoretical context, real
network deployments are yet to gain from it. In this work,1

we present a technique to model and understand the
wireless interference between network nodes and links in
realistic WiFi network deployments. The goal is to do this in
the most unobtrusive fashion possible: 1) Without installing
any monitoring software on the network nodes. This is
motivated by practicality as many APs are often closed
devices, and clients may not be always be privy to new
software; 2) Using a completely passive technique. This is
important as active measurements impact (and are im-
pacted by) network traffic.

To achieve these goals, our approach uses a distributed set

of “sniffers” that capture and record wireless frame traces.

We then analyze the trace to understand the interference

relations. While this is true that this approach requires
additional hardware for measurement, this can be viewed
as a form of third-party solution. Such independent third-
party solutions for wireless monitoring are not uncommon in
industry [5], [6]. The research community has also provided
similar approaches. See, for example, DAIR [7], [8], Jigsaw
[9], and Wit [10]. While these approaches provide many
monitoring solutions, they still do not provide fundamental
understanding of interference relations between network
nodes and links.

Aside from understanding interference relationships,
there are other applications of the technique we develop.
Certain types of selfish behaviors can be detected via this
approach—an example we will demonstrate. A selfish node
can gain unfair share of the available bandwidth by
manipulating different MAC protocol parameters, such as
the clear channel assessment (CCA) threshold, or the
backoff window size. This can deliver an unfair bandwidth
advantage to a selfish node [11] and can be used to even
launch a denial of service attack. A node, for example, can
be selfish by raising the CCA threshold. This can effectively
disable its carrier sensing and creates more transmission
opportunities for the selfish node. This can also cause
collisions, and thereby force the other transmitters in the
vicinity to perform backoff. While the selfish node itself
may also undergo a collision, the backoff period will be
shorter as it will not freeze its backoff counter when carrier
sensing is disabled. We can detect the selfish carrier-sense
behavior using the pairwise interference relationships
discovered by the proposed technique. In our knowledge,
this problem has been explored only in one paper [11], that
provides a limited solution using a nonpassive technique.

434 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 3, MARCH 2013

. U. Paul and S.R. Das are with the Computer Science Department, Stony
Brook University, Stony Brook, NY 11794-4400.
E-mail: {upaul, samir}@cs.sunysb.edu.

. A. Kashyap is with Symantec Research Labs, Mountain View, 65 Rio
Robles E Unit 2211, San Jose, CA 95134.
E-mail: kashyap.anand@gmail.com.

. R. Maheswari is with Akamai Technologies, 18 Day Street, Apartment
308, Somerville, MA 02144. E-mail: riteshm@gmail.com.

Manuscript received 21 Nov. 2010; revised 10 Nov. 2011; accepted 18 Nov.
2011; published online 8 Dec. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2010-11-0533.
Digital Object Identifier no. 10.1109/TMC.2011.259.

1. An earlier version of this work was published in two conferences in
two parts [3], [4].

1536-1233/13/$31.00 � 2013 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

1.1 Approach

A set of “sniffers” are deployed to collect traffic traces from a

live network. The traffic traces are then merged using existing

merging techniques for distributed sniffer traces [9], [10],

[12].2 Then, we use a machine learning-based approach to

analyze the merged traces to infer sender-side interference

relationships. It also determines the receiver-side interfer-

ences. See Fig. 1. More specifically, the approach determines

for each link (or node), which other links (or nodes) it

interferes with, as well as the extent or degree of interference.
For detecting selfish behavior, we use the sender-side

interference relation to identify asymmetric behavior between
network nodes. This means that between a given pair of
nodes, while one node can sense the transmission of the
other node, the converse is not true. The main idea of our
approach is that significant asymmetry in favour of a specific node
when witnessed persistently by multiple other nodes is indicative
of selfish behavior. This is because such asymmetry may be
very unusual due to normal wireless channel effects.

Our approach can be used as a “toolbox” with two
important applications: understanding the interference
properties, and detecting selfish behavior in an arbitrary
WiFi network, regardless of the topology or architecture.
System managers can use this tool to perform capacity
planning and appropriate radio resource management, such
as assignment of channels, transmit power levels or
directions when using directional antennas. In addition,
this tool can act as a “police” to detect the malicious user
activity and can provide a significant insight about WiFi
interference behavior in large installations, potentially
influencing future standards design.

Because of its passive nature, our approach is dependent
on the sufficiency of the available network traffic. The most
important challenge is to make accurate estimation of
interference for traffic of unknown and arbitrary nature,
especially in presence of low load in the network. Also,
accurate identification is very challenging when a selfish
node exhibits probabilistic behavior to avoid detection.

We discuss related work in Section 2 and the broad
approach in Section 3. The details of the HMM formulation
are covered in Section 4. Section 5 contains the experimental
evaluations for interference relation. Section 6 defines the
metric to identify selfish nodes and Section 7 presents the
experimental evaluations for selfish carrier-sensing detec-
tion. We will conclude in Section 8.

2 RELATED WORK

2.1 Analyzing Interference

Interference in an 802.11 wireless network can be readily
measured by putting saturated traffic on two links simulta-
neously and measuring the aggregate throughput. The
decrease in throughput due to interference from the other
transmission indicates the amount of interference. This
approach ordinarily needs Oðn4Þ measurements for an n
node network. However, [13] outlines a method to do this
with only Oðn2Þ measurements. More sophisticated ap-
proaches do not perform direct measurements as above, but
uses certain modeling steps to reduce the number of
measurements to OðnÞ. The idea here is to 1) measure
Received Signal Strength (RSS) on each link using broadcast
beacons, 2) perform a profiling study describing the deferral
and packet capture behavior of the radio interface, 3) develop
a suitable MAC-layer model. Together the above can
estimate interference between active links and link capacities
in presence of interfering traffic. There are different
variations of this basic approach presented in [14], [15],
[16] which need active measurement. While the requirement
of a quiet, interference-free environment to do RSS measure-
ments makes these methods unrealistic in live networks, the
method presented in [14] can model interference by doing
measurement even in the presence of external interference.
However, the profiling needs to be done a priori.

In addition to the above, there are various sundry works
on evaluating interference characteristics in an 802.11
network. For example, in [17], Jamieson et al. investigate
the impact of carrier sensing. In [18], Chang et al. develop a
model for the physical layer capture. In [19], Das et al. show
that pairwise interference modeling is often not accurate
and multiple interferers must be accounted for. In [20],
Magistretti et al. present an inference tool to infer the
activity share among a set of conflicting links. In [3], we
present our approach of indentifying interference relations,
but with limited evaluation.

2.2 Detecting MAC-Layer Misbehavior in 802.11

Most of the existing MAC-layer misbehavior detection
techniques only attempt to detect one type of selfish
behavior: backoff manipulation in 802.11. They use different
methods, such as game theoretic approach [21], Sequential
Probability Ratio Test (SPRT) [22], nonparametric cumula-
tive sum (CUSUM) test [23], coordination from the receiver
[24] to identify backoff manipulation or to restrict the
sender from being selfish. DOMINO [25] can detect other
misbehaviors in addition to backoff manipulation, e.g.,
sending “scrambled frames,” using smaller DIFS and using
oversized NAV. None of these techniques can detect selfish
carrier-sense behavior and thus can be complementary to
the approach described in this paper.

Manipulation of the carrier-sense behavior is harder to
detect. This is because normal fluctuations of wireless
channel must be distinguished from manipulated carrier
sensing. In our knowledge, only one paper [11] has
addressed this issue before our work in [4]. The technique
proposed in [11] relies on a strong assumption that the
selfish node that has increased its CCA threshold is unlikely
to correctly recognize low power transmissions from the AP
as legitimate packets. Thus, by sending low power probes,

PAUL ET AL.: PASSIVE MEASUREMENT OF INTERFERENCE IN WIFI NETWORKS WITH APPLICATION IN MISBEHAVIOR DETECTION 435

2. These techniques also infer and add the packets that are missing from
the merged trace.

Fig. 1. Overview of the approach.

the AP can potentially detect such nodes. This assumption
implies that packet reception with power lower than CCA
threshold is not possible, as such packets are treated as noise.
However, the attacker can avoid detection by simply
changing the CCA threshold only when it transmits a packet
and reverting back to the normal threshold right after the
transmission.3 Also, depending on how the radio transceiver
is designed, packet reception success may not be dependent
on the CCA threshold. Also, this technique is not passive.

2.3 Use of Distributed Sniffers

Techniques based on using distributed sniffers can be found
in a number of measurement studies for the purpose of
learning various properties of live network such as conges-
tion [1], protocol behavior in a hotspot setting [2], [9], [10],
etc. The DAIR system also uses such an approach for
troubleshooting [7] and security [8]. More details on similar
related works appear in [3, Section 2.2]. In this paper, we
employ a technique similar to [12] to merge individual traces
into a unified trace. However, unlike all the previous studies,
our focus is on learning the interference relations and
detecting selfish carrier-sense behavior in the network.

3 OVERALL APPROACH

3.1 Problem Statement

In 802.11, interference can occur either at the “sender side” or
at the “receiver side” (or both) [15]. Sender side interference
pertains to deferral due to carrier sensing. In this case, one
node freezes its backoff counter and waits when it senses the
second node’s transmission. In case of receiver side inter-
ference, overlapped packet transmission causes collisions at
the receiver. This requires packet retransmission. In both
cases, the sender additionally has to go through a backoff
period, when the medium must be sensed idle.4 The net
effect of the interference is reduction of throughput capacity
of the network.

Our general goal is to understand the deferral behavior
that accounts for the sender side interference. To detect
selfish carrier-sense behavior, we need to identify the
asymmetry in the deferral behavior. The deferral behavior
between two nodes, X and Y is said to be asymmetric if Y
defers for X’s transmission and X does not defer for Y ’s, or
vice versa. Such asymmetry is possible in wireless networks
due to interface heterogeneity. But it is simply unlikely that a
node X demonstrates similar asymmetry with many such
Y ’s in the same direction. Our strategy is to flag such nodes as
potentially selfish, with degree of selfishness indicated by
extent of asymmetries exhibited and the number of such Y ’s
(called “witnesses”).

For modeling convenience, we consider interference
between node or link pairs only. Note that it will allow us
to capture the “physical interference” [26] where a given link
is interfered collectively by a set of other links, not by a single
link alone. This is due to the additive nature of the received
power. However, pairwise consideration can still be quite

powerful in practice. Also, in reality the probability of having
multiple concurrent packet transmission is very small even
when there are many active flows in the network. For
example, Mahajan et al. [10] analyzed a major trace collected
during the SIGCOMM 2004 conference and found that only
0.45 percent of packets actually overlapped in transmission.
This limits the usefulness of having a more elaborate higher
order model for deconstructing interference relationship. On
the other hand, pairwise relationship can be enough for our
method of detecting selfish carrier-sense behavior. We do note
that this simplification is not fundamental to our basic technique.
The technique can be extended, albeit with higher computational
cost, to physical interference.

In wireless networks, interference is better expressed in
terms of probabilities because of the inherent fluctuation of
the signal power due to fading effects and probabilistic
dependency of error rates with signal to interference plus
noise ratio (SINR). Prior measurement and modeling
studies have elaborated on this aspect [13], [15]. Thus, in
this work, we estimate via passive monitoring the nonbinary,
pairwise interference between any two network nodes or links, in
terms of probability of interference. For any link pair, the
probability of interference is given by

pd þ ð1� pdÞpc; ð1Þ

where pd is the “probability of deferral” between the
senders, and pc is the “probability of collision” at the
receivers if both senders transmit together.5 See also Fig. 1.
When considering node pairs only, probability of inter-
ference is just pd, assuming symmetric interference between
these two nodes.

If one of the nodes in a node pair shows selfish carrier-
sense behavior, the sender-side interference ðpdÞ should be
very asymmetric. Thus, our next goal is to quantify the
asymmetry for each pair of nodes in the network. For a given
pair of nodes, X and Y , we estimate the probability
PdefðX;Y Þ that node X defers to node Y ’s transmission. We
do this estimation for all node pairs in either direction. As
mentioned before, significant asymmetry in this probability
indicates possible selfishness. Let us assume that there is
asymmetry in favor of X, i.e., PdefðX;Y Þ � PdefðY ;XÞ. If this
is also witnessed by more nodes such as Z, i.e., there exists
several Z 6¼ Y such that PdefðX;ZÞ � PdefðZ;XÞ we have
more confidence that X is behaving in a selfish manner.

3.2 Discussions

To estimate the interference relations between a given pair of
nodes, our technique needs to have instances when
simultaneous transmissions are attempted by the two nodes.
The conjecture here is that if one observes the live network
traffic for a long enough period, enough of such instances
will be available for each node pair. Our goal is to 1) identify
such instances, and 2) infer the deferral behaviors during
such instances. There are several challenges here. First,
creating a complete and accurate trace is itself a difficult
problem. There are many approaches proposed in literature
to create a complete trace. But for our technique, incomplete

436 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 3, MARCH 2013

3. There may indeed be a latency issue that can slow down the selfish
node if such changes are frequent. But we do not consider this to be a
fundamental issue.

4. We are assuming that the reader has an overall idea of the 802.11 MAC
protocol. Specific details will be brought up as necessary.

5. This definition ignores ACKs for modeling and notational convenience
as in [13], [15], and is not a limitation. We indeed use unicast traffic with
ACKs for evaluation.

trace may suffice as long as it is statistically similar to the
complete trace. Second, unknown load of the nodes makes it
harder to estimate the deferral behavior. In our approach, we
utilize the strategy of analyzing interpacket times which can
provide certain confidence. Third, heuristics can be used to
infer the deferral behavior. But straightforward heuristics
may have limited power. More details about these challenges
appear in [3].

3.3 Approach

We need to come up with a rigorous statistical modeling
approach to determine deferral behavior among network
nodes. Our basic approach is as follows: we model the 802.11
MAC-layer operations of two sender nodes in the network
(say, X, Y) via a Markov chain. The parameters of this chain
(essentially the state transition probabilities) are estimated
from the observed trace using an approach based on the
Hidden Markov Model (HMM) [27]. These parameters in
turn can estimate the deferral probabilities. We devote the
entire next section describing the HMM-based approach.

4 HIDDEN MARKOV MODEL FOR SENDER-SIDE

INTERACTIONS

A hidden Markov model [27] represents a system as a
Markov chain with unknown parameters. Here the states of
the Markov chain are not directly visible, but some
observation symbols influenced by the states are visible.
The unknown parameters (such as the state transition
probabilities of the Markov chain) can be learned using
different standard methods [27], [28], [29] with the help of
the observed sequence of observation symbols. Various
machine learning applications such as pattern, speech, and
handwriting recognition have used HMM technique. We
will be using the HMM approach for modeling interactions
between a pair of senders in an 802.11 network and
inferring sender-side interference relations (deferral beha-
vior) between them.

4.1 Markov Chain

Each sender in 802.11 MAC protocol can be modeled as a
Markov chain [3], [30] as shown in Fig. 2. A sender node,
say X, is found in one of the following four states—“idle,”
“backoff,” “defer,” and “transmit.” The essence of the
802.11 MAC protocol lies in these four states. We
intentionally ignore interframe spacings (e.g., DIFS) to keep
the chain simple. In the rest of the paper, we call the four
states I , B, D, and T , respectively for the sake of brevity.
The high level description of this chain can be found in [3].

Note that the state transition probability between B and D
of the corresponding sender node is influenced by the states
of other nodes (i.e., transmitting or not) in the network, and
the deferral probabilities between the sender and these
nodes. Similar argument applies for the transition prob-
abilities from I to D and T , and transition probabilities
from T to D and B.

Since the state transitions of the Markov chain for a given
sender is impacted by the transmissions from other nodes, a
Markov model of a single sender is not enough to get the
complete picture of the network behavior. Instead, a
combined Markov model needs to be considered. Here,
each state is a tuple consisting of states of individual nodes.
Such a Markov chain would be intractable as it would lead to
a state space explosion with exponential number of states.
Since we focus mainly on determining the pairwise inter-
ference relationships, and our technique to detect selfish
behavior needs only pair-wise deferral behavior, we can
restrict ourselves to the consideration of a combined Markov
chain for only a pair of nodes, sayX and Y . Each state in this
Markov chain is a two-tuple consisting of the states ofX and
Y . For example, the state where X transmits and Y defers
would be hT ;Di. Out of 16 possible states in theory, five
states are not legal (e.g., hD;Di, hD;Bi etc.6), leaving
11 ;possible states. See Fig. 3 for the two-node combined
Markov chain. (Only the solid lines indicate valid transi-
tions. The dotted transition lines will be discussed later.)

The state transition probabilities between certain states in
this Markov chain are determined by the deferral prob-
abilities between X and Y . For example, transition prob-
abilities from state hB;Bi to state hT ;Di or hT ;Bi would
depend on deferral probability of Y with respect to X. Let
us explain this using an example. Assume that Y carrier
senses X (or Y can sense X’s transmission) perfectly. Then
when X moves from B to T state (i.e., starts transmitting as
soon as the backoff interval is over), Y must also move from
B to D as it defers to X’s transmission by freezing its backoff
countdown timer. If instead Y never carrier senses X, it will
remain in the B state. The deferral probability of X and Y

PAUL ET AL.: PASSIVE MEASUREMENT OF INTERFERENCE IN WIFI NETWORKS WITH APPLICATION IN MISBEHAVIOR DETECTION 437

6. Note that this Markov chain assumes only two nodes X and Y interact.
Thus, for example, the state hD;Di is not possible as both nodes cannot
defer at the same time.

Fig. 2. State transition diagram for a single sender. CS ¼ 0ðCS ¼ 1Þ
means that the carrier is sensed idle (busy). Q ¼ 0 (Q ¼ 1) means that
the interface packet queue is empty (nonempty).

Fig. 3. Markov model of the combined MAC Layer behavior of two nodes

(sender side only). Note that some arrows are bidirectional.

depends on the number of instances when either of the
nodes moves to D state.

Note again that this combined Markov chain is specified
for a node pair only, as we are interested in pairwise
interference. This process can be repeated for all pairs to
determine the all-pair sender-side interference. We filter out
the packets of just the two senders under consideration for
analysis, and ignore the other packets. This may misinter-
pret an active node, deferring for a third node’s transmis-
sion, as idle, and we may miss an opportunity to interpret
the interaction between the particular pair as interfering or
noninterfering. But, it is important to note that this does not
create any incorrect interpretation. Recent studies [10] show
that the number of instances of three or more nodes
simultaneously being active is much less than that of only a
pair of nodes being active. Thus, we should get enough
instances of just a pair of nodes being active in a long trace.
An alternate but computationally expensive method could
try to identify portions of the trace where only the senders
in a node pair being considered are active.

4.2 Observation Symbols

The state transition probabilities of the combined Markov
chain depend on the deferral behavior between the two
nodes under consideration. Thus, if we can learn the
unknown state transition probabilities, this will in turn
provide us the deferral relations. But the states of this
Markov chain are not directly visible in the packet trace.
Instead a set of observation symbols are visible. There are
four possible observation symbols in the trace depending
on whether X or Y transmits:

. i: neither X, nor Y transmitting.

. x: X transmitting.

. y: Y transmitting.

. xy: both X and Y transmitting.

We thus need to map each of the 11 states in this Markov
chain to one of the four observation symbols. This mapping
obviously is not unique as more than one state can map to
the same observation symbol. For example, both states
hI ; Ii and hB;Bi map to the symbol i. Similarly, both hB; T i
and hD; T i map to symbol y. The difficulty here is that
backoff cannot be distinguished from defer or idle periods.
This ambiguity can be reduced by using a heuristic that
exploits the time duration of various observation symbols.
This is elaborated below.

A backoff interval in 802.11 lasts for an integral number
of slots ð20 �s in 802.11b) chosen randomly from a window
of 0 to 31 slots (for first backoff stage7). This knowledge
can be used to distinguish between backoff and idle/defer
periods. The conjecture here is that defer and idle periods
are very unlikely (though not impossible) to be within this
bounded interval and also last for an integral number of
slots like backoff period. But this strategy requires the
clock accuracy within few microsecond, which demands
specialized technique.

We thus use a weaker heuristic in this work that does not
require strong clock accuracy. We assume that defer/idle

periods are always longer than 31 slots and backoffs are
always equal or shorter. This, however, introduces errors
for very short idle time and small 802.11 frames with
airtime less than 31 slots ð620 �s for 802.11b8). These sources
of error make the results presented in the next sections as
only a lower bound on the accuracy obtainable by the base
technique. We keep this as our future work to remove the
timing inaccuracy by using more sophisticated technique.

Based on the above weaker heuristic, each observation
symbol (except xy) can be classified into two types. The
symbol i can be either is or il, corresponding to short ð� 31
slots) and long ð> 31 slots), respectively. According to the
heuristic, is is most likely output by hB;Bi state, while il is
most likely output by hI ; Ii state, for example. Similarly,
the symbols x and y can be either xs and xl, and ys and yl,
respectively to differentiate among the activities (defer/idle
or backoff) of the non-transmitting node during that period.
Fig. 3 shows the observation symbols for each state.

The heuristic described above helps us to distinguish
between backoff and idle/defer periods. However, we still
cannot differentiate between idle and defer. For this reason,
both the states hT ; Ii and hT ;Di map to the same
observation symbol xl. This implies that the transition from
state hT ; Ii to state hT ;Di will not be visible in the merged
trace as there is no change in the observation symbol. Thus
any transition from state hT ; Ii to any other state, for
example, state hI ;Bi via state hT ;Di will not be correctly
interpreted. To overcome this problem, we force transition
links from state hT ; Ii to states which have incoming
transition from state hT ;Di. We refer to these links as virtual
links. Similarly, we also add virtual links from state hI ; T i
symmetrically. Fig. 3 shows the virtual links in the model in
dotted lines. After we calculate the transition probabilities of
the model using the technique described in the following
section, we remove such virtual links and distribute the
probability on each such virtual link to the corresponding
sequence of valid transition links. See the appendix, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TMC.2011.
259, for a detailed elaboration of this technique.

Each packet in the merged packet trace is timestamped
with the arrival time at the sniffer along with other
information including the id of the sender, size of the
packet, and the rate at which it was transmitted. We parse
this information in the trace to obtain the sequence of
observation symbols for the two senders under considera-
tion. Based on this sequence, we use the following
technique to learn the state transition probabilities of the
Markov chain, that in turn will provide the probability of
interference between the senders.

4.3 Formal Specification and Learning

We now formally describe the HMM using standard
notations [27]. The HMM consists of the following:

. Set S of N states, where N ¼ 11. S is given by:

S ¼ fSig ¼ fhI ; Ii; hB; Ii; hT ; Ii; hI ;Bi; hI ; T i;
hB;Bi; hT ;Di; hT ;Bi; hD; T i; hB; T i; hT ; T ig:

438 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 3, MARCH 2013

7. As a simplification, we develop the model only for the first backoff
stage here. This implicitly assumes that retransmissions are rare (which has
been true in our experiments). The general approach can be extended to
handle multiple backoff stages by observing the number of retransmissions
in the trace. 8. This means TCP packets with payload less than 400 bytes in 802.11b.

. Set V of M observation symbols, where M ¼ 7. V is
given by: V ¼ fis; il; xs; xl; ys; yl; xyg.

. Matrix A of state transition probabilities, indicated
by A ¼ ½aij�, where aij is the transition probability
from state Si to Sj. This matrix is unknown at the
outset and will be determined. Note that some state
transitions are invalid and such aij is set to 0. Such
transitions are not shown in Fig. 3.

. Matrix B of observation symbol probabilities, in-
dicated by B ¼ ½bjk�, where bjk is the probability that
the observation symbol is vk for state Sj. In our case,
observation symbols are deterministic for each state.
However, they are not unique. The mapping from
states to symbols are shown in a table within Fig. 3.

. Vector � of the initial state distribution, indicated by
� ¼ ½�i�, where �i is the probability of initial state
being Si. We use �i ¼ 1=N for all i; 1 � i � N .

The above specification defines the HMM, � ¼ ðA;B; �Þ.
The packet trace provides the observation sequence
O ¼ O1; O2; . . . ; OT , where each observation Ot 2 V , and T
is the number of observations in the sequence.

Given the above HMM � and the observation sequence
O, our goal is to learn the model parameters � ¼ ðA;B; �Þ
that maximize P ðOj�Þ. This is a difficult problem, and
there is no optimal algorithm for it. We can, however,
use the expectation-modification (EM) algorithm, which is
an iterative method to determine �, such that P ðOj�Þ is
locally maximized. The EM algorithm alternates between
an expectation (E) step, which computes the model
parameters most likely to produce the observation, and a
modification (M) step, which computes the maximum
likelihood of model parameters across multiple E steps
[28]. We use the well-known Baum-Welch method, which is a
type of EM algorithm, based on the forward-backward
algorithm developed by Baum and Eagon [29]. The method
ensures that in every estimation step, we find a model
which is more likely to produce the observation. Thus, if
we estimate the parameters of the model � to get �, then
P ðOj�Þ � P ðOj�Þ.

While initializing the state transition probabilities in
Baum-Welch method, we assign equal probability to all the
outgoing valid transitions from each state. This ensures that
there is no initial bias in the model toward interfering or
noninterfering pair of nodes. This also aids in quick
convergence of the method. We deal with the problems of
numeric inaccuracies because of continued multiplications
of certain small fractions by using the scaling technique in
the procedure [31].

Let � ¼ ½�i� be the stationary (steady state) distribution
of the states. After learning the transition probabilities
A ¼ ½aij�, � ¼ ½�i� can be determined as � ¼ limn!1 �A

n.
The convergence is guaranteed as A is a stochastic matrix.

4.4 Interference Relations

4.4.1 Learning Sender Side Interference

Transitions into any state with a defer component (i.e.,
states such as hD; �i and h�;Di) indicate interference.
Similarly, transitions into any state of the set fhB; T i;
hT ;Bi; hT ; T ig indicate absence of interference. Thus the
sender side interference can be interpreted as the total
probability of transition into the interfering states. If we
represent �i’s as P ðI ; IÞ, P ðB; IÞ, etc, the deferral prob-
ability, pd, is given by

P ðD; T Þ þ P ðT ;DÞ
P ðD; T Þ þ P ðT ;DÞ þ P ðB; T Þ þ P ðT ;BÞ þ P ðT ; T Þ :

The above expression essentially captures the probability of
being in the interfering states when one of the two nodes is
transmitting. Here, we are assuming a symmetric link
between a node pair. In reality, links may be asymmetric,
and the above expression can be easily modified to consider
asymmetric deferral probabilities. This is discussed in
Section 6.1.

4.4.2 Learning Receiver Side Interference

The receiver-side interference causes collisions that can be
detected relatively easily by tracking retransmissions in the
trace.9 One can identify retransmitted packets by observing
the set “retransmit bit” in the frame header. A retransmitted
frame, say R, can be correlated back to the original frame,
say P , that has not been received correctly as both these
frames carry the same sequence number. Any frame S from
a different sender overlapping with P is a potential cause of
collision. If P does not overlap with any other frame, the
packet loss is due to wireless channel errors rather than
collisions [10], [32]. Because of the probabilistic nature of
packet capture, sufficient statistics need to be built up to
determine receiver-side interference. This is because frames
like S and P—even when overlapping—may not always
result in a collision. Thus, the receiver-side interference
between two links, or in other words, the probability of
collision pc can be determined as the ratio of the collision
count and the overlapped-frame count.

5 EVALUATING INTERFERENCE RELATIONS

We will now evaluate the effectiveness of our approach to
infer interference relations by a series of evaluations. We
will use a mix of different scenarios starting from careful
micro-benchmarking to using large and congested wireless
network traces. For the benefit of the reader, we summarize
the various scenarios we will use in Table 1.

PAUL ET AL.: PASSIVE MEASUREMENT OF INTERFERENCE IN WIFI NETWORKS WITH APPLICATION IN MISBEHAVIOR DETECTION 439

9. For unicast transmissions only. However, unicasts are much more
frequent relative to broadcasts in a real network packet trace.

TABLE 1
Summary of Evaluation Scenarios Used in the Paper to Infer Interference Relations

5.1 Microbenchmark for Sender-Side Interference

We first describe a set of microbenchmarking experiments.
Here two senders transmitting broadcast traffic are used to
specifically evaluate the sender-side interference using
carefully controlled load. We evaluate for a range of
interference scenario by positioning the senders at different
locations. We also compare our microbenchmarking experi-
ments to infer sender-side interference with two other
possible methods described below.

5.1.1 Comparison Points

1) Profile-based method (PROFILE). This technique is specifi-
cally based on [14], [15] and needs active measurements. It
creates a profile for each device in the network with specific
interface card used. Profiling is done by collecting a large
number of measurements using a pair of devices to create
the correlation between the received signal strength and
the probability of deferral. This needs to be repeated for all
different cards used in a network. Later the profile can be
used to estimate the probability of deferral between two
nodes by measuring the average RSS values between them
and doing a lookup on the profile. As this technique is
expected to be quite accurate, we use this as a benchmark.

2) Moving window based method (WINDOWðtÞ). This is a
simple heuristic that may need extensive parameter tuning.
In this technique, a moving time window of size t seconds
over the combined packet trace is maintained. For each
window position, we analyze only the packets inside the
window and infer whether the nodes considered interfere
or not (see below). Finally, we count the number of window
instances where the nodes interfere, and obtain the
probability of deferral as a fraction.

Specifically, we use the following approach:

. Only consider windows that have packets from both
nodes. (We do not want to consider windows that
have mostly one node transmitting and the other
silent.)

. Determine the saturation throughput Tsat. This is
tricky and will depend on the transport protocol and
packet sizes used.

. The aggregated throughput Tobs of the two nodes in
the window being considered is calculated. If
Tobs > Tsat � �1, then the window is considered
saturated, otherwise the window is considered
unsaturated.

. A saturated time window is marked noninterfering
if Tobs > Tsat þ �2.

. The parameters �1 and �2 are needed to ride out
measurement noises and are tuned.

. Probability of deferral is the fraction of saturated
time windows that are marked interfering.

5.1.2 Microbenchmarking with Two Nodes

Our microbenchmark experiment consists of a setup with
two senders and two sniffers.

Each sniffer is colocated with a sender to guarantee that all
frames are captured. Both the senders and sniffers have
802.11 radios. All the cards used have Atheros chipsets, and
the popular MadWiFi driver is used. We also use a “beacon”
node, whose sole responsibility is to transmit 802.11 beacons

at regular intervals to provide a common time base needed
for merging the traces. In a normal deployment, these
beacons will be supplied by existing APs.

For the experiments, we configure all the four radios in
the same channel. The choice of channel is immaterial. We
also set the sender radios in “ad hoc” mode and the sniffer
nodes in “monitor” mode. All experiments are done for
802.11b using the PHY-layer data rate of 11 Mbps. A large
packet size (1,470 bytes) is chosen for the experiments. This
is because, with smaller packets, the sniffers cannot capture
all packets in our low-cost embedded hardware, likely due
to inefficiencies in interrupt processing. Tcpdump is used
for packet capture in the sniffers.

We create a range of interference scenarios by position-
ing one sender-sniffer pair fixed at one location, and
moving the other to various locations in the building. For
each scenario, we perform the following measurements.
First, we measure the actual probability of deferral between
the nodes. To do that, we follow the method in [13] briefly
described below. We let each sender, configured with
saturated UDP traffic, broadcast in isolation for a minute,
and measure their throughputs in isolation. We then let
them broadcast together with saturated traffic, and measure
their throughputs again. The ratio of the sum of through-
puts when the senders broadcast together to the sum of
throughputs when the senders broadcast in isolation is
defined as BIR, or the broadcast interference ratio [13].
Note 0:5 � BIR � 1. The “measured” probability of defer-
ral is estimated as 1=BIR� 1.

We also collected the RSS measurements at each sender
for each scenario when the other sender broadcasts in
isolation. This is used to estimate the probability of deferral
using the PROFILE method described above. The profil-
ing of each interface card have been independently done
using a method similar to [15].

Next, we conduct a series of experiments with varying
traffic load in the following fashion for each scenario to
evaluate HMM and WINDOWðtÞ methods. The senders
are configured to broadcast UDP packets simultaneously
for one minute with 10 different load levels ranging from
0.1 to 6 Mbps. The PHY-layer bit rate is chosen to be
11 Mbps; thus, 6 Mbps for each node means saturated load.
Meanwhile, each sniffer captures all the packets it hears in
that duration. The packet trace from each sniffer is merged
using the techniques described earlier, and this combined
trace is used to estimate the probability of deferral using the
HMM and the WINDOWðtÞmethods. The later is repeated
for three different window sizes ðt ¼ 0:01 s; 0:1 s; 1 sÞ.

We make such measurements for 11 different locations
of the senders, creating 11 different scenarios. The distribu-
tion of the measured probability of deferral at different
locations is presented in Fig. 4a. For each scenario, 10
different values of offered load are used between 0.1 and
6 Mbps, thus creating 110 measurements for HMM and the
WINDOWðtÞ methods, and 11 measurements (one for each
scenario only) for the PROFILE method. The distribution
(CDF) of errors (“estimated”—“measured” probability of
deferral) is plotted for all three methods in Fig. 4b. Note
that the HMM approach is quite competitive with the
PROFILE method. In fact, it is slightly better overall for
the particular distribution of deferral probabilities. The

440 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 3, MARCH 2013

reason for this is that the PROFILE method uses profiles
for interface card models, rather than from the specific
cards used in the experiments [15], even though it uses RSS
measurements on the actual network with the actual cards
used. Variations between individual cards can lead to
modeling errors.

The root mean square error (RMSE) values are 0.165 and
0.208 for HMM and PROFILE, respectively. The RMSE
values for WINDOWðtÞ methods is 0.385, 0.408, and 0.402
for t ¼ 0:01 s; 0:1 s, and 1 s, respectively. We have noted
before, however, that the PROFILE method is impractical
for analyzing live network traffic and it also requires access
to the network nodes.

Overall, HMM is quite competitive with PROFILE, but
requires only passive measurements. The experience with
the window-based method is quite variable. It is also quite
sensitive to choice of window size.

5.2 Simulation-Based Evaluation

Simulations let us create arbitrary topologies and inter-
ference conditions easily. However, the physical layer
(including interface behavior for carrier sense and packet
capture) implementation is often idealized or unrealistic in
simulations. To address this issue, we use an extended
version of the ns2 simulator that includes realistic measure-
ment-based models [33]. These models were validated
against experimental results showing excellent accuracy [33].

For the sake of completeness, we note that the enhance-
ments in ns2 in [33] are done specifically in the following
physical layer components—1) radio propagation model,
2) deferral or carrier sense model, and 3) packet reception
model. For (1), models are derived from real measurements
in a testbed. For (2) and (3), measurement-based profiles of
a testbed are created where every value of RSS is mapped to
a deferral probability and every value of SNR is mapped to
receive probability, respectively. These profiles make the
interference relations between links nonbinary.

We consider two scenarios, where 20 nodes are uniformly
and randomly distributed in a 200� 200 m area and a 100�
100 m area. These two scenarios produce different topolo-
gies: sparse and dense. We generate traffic by creating one-
hop TCP flows on randomly chosen feasible links. Both the
interarrival time and duration of flows are chosen from an
exponential distribution. For the results presented here (See
Fig. 5), the simulations were run for 180 s, the average
duration of each flow was 5 s, and the average interarrival
time between flows was varied from 2.5 to 1 s, such that the
average load in the network varies from 2 to 5 flows.

In Fig. 5, we show the CDF of the estimation error
(as before) for the probability of deferral between
node pairs. CDFs for both HMM and WINDOWðtÞ
methods are presented for the sparse and dense network.
The PROFILE approach is not shown here as it would be
perfectly accurate in the simulator (as the simulator’s
deferral model itself uses the same profile model). From
the plots note that HMM performs significantly better than
the window-based method. Average RMSE value for the
HMM method is about 0.1, while the average RMSE value
for the better of the two window-based methods is about
0.4. Note again the accuracy of the window-based method
is quite sensitive to window sizes.

5.3 Complete Evaluation on WLAN

Here, we provide a complete evaluation—both sender and
receiver sides. These experiments are done on an active
WLAN with seven APs spread over two floors of the
Computer Science department building of Stony Brook
University. Seven laptops are used as clients. Each client
fetches a large file via HTTP download using a unicast link
for about 20 mins. This simulates real network traffic that is
sniffed using nine sniffers (Soekris single board computers
with 802.11 miniPCI cards with Atheros chipset and with
external USB flash memory to store packet traces). The
sniffers are deployed based on convenience, i.e., near a
power outlet and in the rooms that we have regular access
to. However, an attempt was made to keep them as close to
the APs as possible.

Sixteen client laptop pairs are considered for evaluation.
All of these pairs associate with two different APs. Unlike
the microbenchmarking experiments, the default autorate
control with 802.11b is used. Also, the 802.11 frames are now
unicast with ACK. RTS/CTS is disabled. For each pair, the
probability of interference between the pair of download
links (AP to client) is “estimated” using (1). First, the
probability of deferral ðpdÞ is estimated using the HMM-
based method using the merged sniffed traffic traces from all
sniffers. Second, the probability of collisions ðpcÞ is estimated
by observing the retransmissions for overlapped packets as
described in Section 4.4.2. However, in all cases, retransmis-
sions were rare, typically less than 1 percent of frames were
retransmitted. This is consistent with prior experimental
observations [10]. Thus, pc could be safely ignored with pd
alone determining the probability of interference.

For validation, pd is “measured” via the BIR method
described in the previous section. For these measurements,
simultaneous saturated UDP traffics on the downlinks are
used for about 2 mins. The validation results are shown in

PAUL ET AL.: PASSIVE MEASUREMENT OF INTERFERENCE IN WIFI NETWORKS WITH APPLICATION IN MISBEHAVIOR DETECTION 441

Fig. 4. Combined performance results for 11 chosen scenarios for two
node experiments. (a) Measured probability of deferral for different
scenarios; (b) CDF of error in estimating probability of deferral.

Fig. 5. NS2 simulation results showing CDF of error in deferral

probability estimates for the (a) sparse and (b) dense networks.

Fig. 6 as a scatterplot. Note the high degree of predictability
of the estimation in this real-life experiment. The straight
line is the least square fit with the condition that the line
passes through 0. Note that it is very close to the y ¼ x line.
The R2 value for this line is 0.88 showing a good fit.

A careful reader will notice a slight bias at the low end
of the deferral probabilities. The HMM method consis-
tently overestimates deferral probability, when the prob-
ability is very small. We have also observed this in our
microbenchmarking though it does not show up in the
CDF plots. The reason for this is the heuristic we used in
our modeling (Section 4.2) that defer/idle periods are
always assumed longer than 31 slots. When there is little
interference, often idle periods could be shorter than
backoffs. If they are misclassified as backoffs, the possibi-
lity of misclassifying some idle states as defer increases. As
discussed in Section 4.2, a stronger heuristic using more
accurate clocks could address this issue.

5.4 Using Large-Scale Wireless Traces

Encouraged by the strong validation results in the depart-
mental WLAN trace analysis, we use the wireless network
trace collected at the SIGCOMM 2004 conference [10] for
demonstrating powerful capabilities of our tool. The trace
was obtained from the CRAWDAD archive [34]. The
SIGCOMM 2004 conference was four days long and was
attended by more than 500 attendees. During busy periods,
several simultaneously active flows were not uncommon
[10]. The WLAN under consideration in this trace had
five APs—three on channel 1, one on channel 8 and the
other one on channel 11. Five sniffers were used each with
three wireless interfaces. Two of them listened on channel 1
and 11, respectively, and the third one listened either on
channel 8 or 6 [10]. We consider only channel 1 in this work.

First, we analyze the probability of interference between
client-to-AP links where the clients are associated with the
same AP. For this analysis, we pick random pairs of clients
associated with the same AP and find a 20 mins long period
when they are both simultaneously active. In Fig. 7a, we
plot the CDF of the probability of interference for 1,990 such
randomly chosen link pairs. This shows that the inter-
ference is well-distributed over the entire range showing
roughly similar probabilities of (mostly) interfering clients
and (mostly) noninterfering clients. This indicates that a
significant number of “hidden” clients associate with the
same AP. However, these hidden clients almost never
collide. Collision probability is found to be minuscule (less

than 0.4 percent). Thus, probability of interference is again
controlled by the deferral probability alone.

Next, we do a similar analysis but for pairs of clients that
associate with different APs. This study is exhaustive
instead of a random sampling as the number of such pairs
is relatively small (154). In Fig. 7a, note that almost
75 percent of such client pairs do not interfere at all and
about 5 percent interfere strongly. The rest are in between.
This indicates that the association control works quite well.
This point is further elaborated in Fig. 7b where we show a
comparison of the deferral probability of 120 randomly
selected clients with its associated AP and with another
random AP. In a good deployment we would normally
expect the latter to be small and the former to be much
higher than the latter. However, we see that while the
interference with the associated AP is higher about
90 percent of the cases (indicating a good association
control), the other AP often presents significant interference.
This can indicate, for example, a poor channel assignment.

6 DETECTING SELFISH BEHAVIOR

In this section, we demonstrate how the interference
relationship can be used to detect selfish carrier-sense
behavior and define a metric to quantize the selfishness of a
node. We also define the characteristic of an effective
witness and introduce two simple heuristics to identify
effective witnesses.

6.1 Detecting Asymmetric Behavior

To detect selfish carrier-sense behavior, we need to identify
asymmetric behavior. This can be detected using the
following fashion. The probability that X has a packet to
transmit and it defers while Y transmits is given by

PdefðX;Y Þ ¼
P ðD; T Þ

P ðD; T Þ þ P ðB; T Þ þ P ðT ; T Þ :

The opposite probability (i.e., Y has a packet to transmit
and it defers while X transmits) is likewise

PdefðY ;XÞ ¼
P ðT ;DÞ

P ðT ;DÞ þ P ðT ;BÞ þ P ðT ; T Þ :

The difference between PdefðX;Y Þ and PdefðY ;XÞ charac-
terizes asymmetry. Larger the difference, higher is the
asymmetry. Due to the nature of our approach, the
asymmetry is tested between a node pair at a time. A
positive (negative) difference indicates that Y ðXÞ gets a

442 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 3, MARCH 2013

Fig. 6. Estimated and measured probabilities of deferral for the 16 test

cases with the departmental WLAN.

Fig. 7. Interference analysis of the SIGCOMM 2004 trace: (a) CDF of
probability of interference between clients associated with the same AP
and different APs; (b) comparison of interference between the
associated AP and another AP.

bandwidth advantage due to asymmetric carrier sensing. In
our evaluation, we have used the difference with a simple
normalization as the “metric of asymmetry,” �ðX;Y Þ,
except when the two probabilities are both close to zero.
Thus, when both PdefðX;Y Þ and PdefðY ;XÞ < � ð� was
chosen to 0.01 in the evaluations), the metric of asymmetry,
�ðX;Y Þ, is given by

PdefðY ;XÞ � PdefðX;Y Þ;

else it is given by

PdefðY ;XÞ � PdefðX;Y Þ
maxðPdefðY ;XÞ; PdefðX;Y ÞÞ

:

Note that �ðX;Y Þ ¼ ��ðY ;XÞ.

6.2 Selecting Witnesses

In general, each network node X must be evaluated for
selfish behavior. By default, every other node Y acts as a
witness and the above metric of asymmetry is evaluated for
the pair ðX;Y Þ. Thus, for each network node X, we take
the average of the metric of asymmetry �ðX;Y Þ over all the
witnesses Y that provide a positive value. The negative values
are discounted as they will be accounted when Y is evaluated
with X as the witness. We call this average the “selfishness
metric.” We will evaluate this metric later in our simulations.

However, if X and Y are not within carrier sense range
of each other (i.e., they never hear each other), Y cannot
serve as an effective witness. This is because P ðD; T Þ or
P ðT ;DÞ would evaluate to zero. (In practice, due to
measurement noise, they evaluate to a very small value
close to zero.) Thus, the metric of asymmetry is zero. While
this is correct, this does present a problem. Assume that X
is indeed selfish in a 4 node network and witness Y1 detects
a very large (i.e., �ðX;Y1Þ is close to 1) metric of asymmetry.
However, witnesses Y2 and Y3 do not hear X at all (and
vice versa). They offer the metric ð�ðX;Y2Þ and �ðX;Y3ÞÞ as
close to 0. Here, witness Y1 is an effective witness while
witness Y2 and Y3 are ineffective witnesses. Without any
further information, if we aggregate these measures using
an average, we obtain a low confidence in X’s selfishness
(about 0.3 in this example), even when we have one perfect
witness and the other witnesses are clearly ineffective. On
the other hand, relying on a single witness (e.g., Y1Þ that
points to a severe asymmetry may not be right as this may
simply be due to random wireless channel/interface effects
and not due to a systematic selfish behavior. Thus, this can
raise false alarms.

This problem cannot be addressed without some addi-
tional knowledge of the network topology regarding which
node can serve as an effective witness. Ideally, we should
only rely on witnesses that are within the carrier sensing
range from a potential selfish node. The more such nodes,
the better.

To address this issue, we use two simple heuristics
named as H1 and H2. For heuristic H1, we assume that the
sniffer locations are known, as well as some bounds on
the carrier sense range ðRCÞ and transmit range ðRT Þ for the
network nodes. Then the sniffers that are separated by at
least RC þ 2RT distance, must sniff nodes that cannot hear
each other. Thus in other words, for a node X sniffed by a

sniffer SX
10 and another node Y sniffed by a sniffer SY ,

node Y will not be an effective witness of node X if SX and
SY are separated by at least RC þ 2RT distance. This simple
heuristic eliminates many nodes that should not serve as
witness to each other. Note that this may not remove all
ineffective witnesses, and if the bounds are incorrect, this
technique may even remove some effective witnesses. But
this technique is practical and easy to use, and at minimum
eliminates a large number of far-away witnesses that cannot
be effective by being outside the carrier-sense range.

For heuristic H2, we do not even need to assume
anything. In H2, Y is an effective witness of X, if they are
both sniffed by a common sniffer. H2 will surely remove all
the ineffective witnesses, and may also remove some
effective witnesses.

For any given heuristic, for each network node X we
take the average of the metric of asymmetry �ðX;Y Þ over all
the nodes Y that are selected as effective witnesses by the
heuristic and that provide a positive value for �. Then we
calculate the “selfishness metric” by a simple averaging.

7 EVALUATING SELFISH CARRIER-SENSE

DETECTION

In this section, we evaluate our technique to detect selfish
carrier-sense behavior. We have performed two sets of
evaluations: 1) a set of microbenchmarking experiments to
understand the effectiveness of the approach and 2) a set of
ns2 simulations to study larger networks and complex
selfish behaviors.

7.1 Experiments

The experiments essentially achieve careful microbe-
nchmarking using similar setup described in Section 5.1.2.
Only two network links are used but wireless channel
quality, traffic load, and selfish behaviors are varied over a
wide range. One transmitter is configured as “selfish”; the
other transmitter is regular and acts as the sole “witness.” A
sniffer node, located in close proximity of each transmitter,
monitors the traffic on corresponding link. In this experiment
we use 802.11a and channel 52 with 6 Mbps PHY layer rate
and a large packet size (1,470 bytes). We use Soekris boards
as the transmitters and laptops running linux as sniffers.

A node achieves selfishness by not sensing carrier
before transmitting. To make a node selfish, we have used
the antenna switching technique described in [35]. There
are two antenna connectors on 802.11 interface for diversity
where either of them can be selected for receiving/
transmitting using driver-level command. We have con-
nected one antenna to one connector, kept the other
connector unconnected. Selecting the unconnected antenna
as the receiving antenna effectively disables carrier sense.11

The impact of the selfish behavior can be varied by simply
varying the distance between the selfish and witness
nodes. A close distance means the witness node is

PAUL ET AL.: PASSIVE MEASUREMENT OF INTERFERENCE IN WIFI NETWORKS WITH APPLICATION IN MISBEHAVIOR DETECTION 443

10. We say a node is sniffed by a sniffer, when the packets transmitted
from the node can be heard by the sniffer.

11. Note that selfishness can also be achieved by resetting the CCA
threshold as in [11]. However, in our hardware we have found that the
antenna switching technique is more foolproof than using an increased
CCA threshold.

impacted significantly due the selfish behavior as the RSS
at the witness node is high. A large distance means that
RSS is low and often the witness node cannot hear the
selfish node due to channel fading, and thus the selfishness
causes little impact.

The benchmarking experiments are performed by
increasing the distance between the two transmitters
(selfish and witness) from a very small value at steps of
3 ft in 28 discrete steps. For each position, 1) the average
SNR from the selfish to the witness transmitter is
measured, and 2) UDP packets are transmitted at different
offered loads on their respective links for 60 s. We use
offered loads of 6 and 4 Mbps, denoting high and low
loads, respectively. We experiment with both loads on the
selfish node, while the witness node has only high load.

Fig. 8 plots the estimated metric of asymmetry � for the
<selfish, witness> node pair for each of the experiments.
The plots are color-coded based on the load. The asym-
metry is clearly higher with higher SNR. Note that with
lower load on the selfish node the asymmetry tends to be
somewhat lower as expected. Also, note significantly lower
asymmetry when the SNR is very high (i.e., nodes are very
close). This is an artifact of our experimental technique. The
selfish node starts picking up some signal at close ranges
even when the antenna is disconnected, and thus it stops
being selfish. So, much lower asymmetry is detected for
very high SNRs.

Note that the above two node microbenchmarking is
sufficient to derive an insight into what would happen in a
multiple node network. Essentially, nodes still need to be
evaluated in a pairwise fashion. For each potential selfish
node, we need to evaluate the metric of asymmetry with
each possible witness node independently. Note again (as
discussed in Section 3), we are currently considering
pairwise interference only. But several other issues remain
to be evaluated—1) how to effectively combine the metric of
asymmetry for a selfish node as provided by multiple
witness nodes into a single measure, defined as “selfishness
metric” in Section 6.2, 2) how suitable are the witness nodes.
We will explore these issues via a packet-level simulation
using the ns2 simulator.

7.2 Simulations

Ns2 simulations let us implement various degrees of
selfishness, where the selfish node senses carrier with only
a certain probability. We use the term degree of selfishness
ðPsÞ to indicate that the selfish node senses carrier with

probability equal to 1� Ps. Ns2 simulations also make it
easier to investigate larger networks, where there are many
nodes, possibly with more than one selfish node with
varying traffic and degrees of selfishness.

In our simulated scenario, there are 40 network nodes
distributed randomly in a square region. We chose a
deployment typical of dense WiFi client distribution in
indoor office environments, assuming that there is one node
in 300 sq ft on average. The default ns2 wireless channel
model is extended to include shadowing [36] effects. This
introduces randomness in the transmission range of a node
instead of making it a perfect disk. Shadowing parameters
are taken from [33] where a set of measurements was done
to model such parameters in an indoor environment. A set
of feasible network links are chosen randomly and one-hop
UDP flows are generated with randomly chosen loads
(between 0.5-1 Mbps). Each flow is active (and then
inactive) only for a random interval of time. Both intervals
are chosen from an exponential distribution with a mean of
5 s. Note that the exact traffic parameters are not important
for our work. All that is important is that enough traffic is
recorded so that for each pair of nodes that are potentially within
the carrier sense range there are concurrent packet transmission
attempts. This ensures that any possible selfish node will
find enough witnesses.

We deploy a set of 10 sniffers at random locations.
Among the 40 network nodes, 1, 2, or 3 nodes are selfish.
The degree of selfishness is varied. For each pair of nodes,
we evaluate the metric of asymmetry by using the
procedure in Section 4. For each network node X, we
measure the selfishness metric in three ways as discussed in
Section 6.2: 1) using all possible witness nodes (also called
“no heuristic” case), 2) using witness nodes based on
heuristic H1, and 3) based on heuristic H2.

Fig. 9 plots the selfishness metric of each node in the
scenario with one selfish node with varying degree of
selfishness where the witness nodes are selected using
heuristic H2. Note that the metric has a very visible peak
only for the selfish node. The values of metric for the selfish
nodes are roughly similar to the degree of selfishness.

Because of space limitation we do not present the
similar plots for the scenarios with 2 and 3 selfish nodes
using different heuristics. We instead show the overall
statistics that summarizes how good our detection is. For
each scenario and for each type of witness node identifica-
tion technique, we evaluate for each node the “estimation
error” as the algebraic difference between the computed

444 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 3, MARCH 2013

Fig. 8. Experimental results with varying load on the selfish node.

Fig. 9. Simulation results for a 40 node network. Node 2 is the only
selfish node. The estimated selfishness metric using heuristic H2 is
shown for each node for each of the 6 sets of simulations that are run
with different degree of selfishness of node 2.

selfishness metric and the actual degree of selfishness of that
node. All nodes (selfish and regular) are included. The
estimation error is plotted as a CDF in Fig. 10. Nine plots
are shown for three techniques used to identify the witness
nodes and for three different numbers of selfish nodes. The
CDF shows that the estimation error is very small in
general and heuristic H2 performs somewhat better than
the other two techniques in general.

In this scenario, the heuristics do not perform much
better than the no heuristic case, because the no heuristic
case itself performs very well. The reason for this is the high
density of the network. To demonstrate the power of the
heuristics we consider a sparser network with 40 nodes
distributed randomly in squared region with one node in
1,500 sq. feet on average. Different scenarios are created by
varying the number of selfish nodes (1, 2, or 3) with degree
of selfishness ¼ 1. Because of the sparsity of the network we
now have to deploy more sniffers to capture all network
traffic. So, this time we deploy 40 sniffers randomly as
before. Fig. 11 shows the average estimated selfishness
metric measured in three ways as before only for the selfish
node(s). Note that as expected 1) estimation becomes better
when we identify witness nodes using the heuristics in
comparison to using all the nodes as witnesses; 2) H2 is
generally a better heuristic, and 3) estimation becomes
worse with a larger number of selfish nodes. The reason for
H2 performing better is that it only considers effective
witnesses, while H1 may include ineffective witnesses as
well. The reason for the third observation is that selfish
nodes cannot be used to correctly identify other similarly
selfish nodes.

8 CONCLUSIONS

We have investigated a novel machine learning-based
approach to estimate interference and to detect selfish
carrier-sense behavior in an 802.11 network. The technique
uses a merged packet trace collected via distributed sniffing.
It then recreates the MAC layer interactions on the sender-
side between network nodes via a machine learning
approach using the Hidden Markov Model. This coupled
with an estimation of collision probability on the receiver-
side is helpful in inferring the probability of interference in
the network links. Significant asymmetry in the sender-side
interaction in favor of a particular node witnessed by

multiple other nodes indicates selfishness. The power of this
technique is that it is purely passive and does not require
any access to the network nodes. Although our technique
works offline, it can be used periodically every few minutes
(for example). Moreover, interference relationship can be
used for efficient network design and capacity allocation. It
can be used as a third-party solution for detecting MAC-
layer misbehavior in 802.11 networks. Evaluations show the
effectiveness of the tool for both the applications.

There are indeed some limitations of the technique as
presented here. So far, we have estimated deferral behavior
assuming only pairwise interference and have ignored
physical interference (see discussions in Section 3.1) arguing
that the improvement in accuracy will be relatively minor.
Also, 802.11 retransmissions were ignored in the modeling
to reduce complexity. These are not fundamental limita-
tions and can be accommodated with higher computational
cost, but are likely unnecessary. So long as enough of the
common baseline case that we modeled indeed show up in
the traffic trace, we will have a very good estimation
accuracy. Our future work will include more evaluations to
demonstrate this aspect. We will also study the impact of
inaccuracy in trace gathering.

REFERENCES

[1] A.P. Jardosh, K.N. Ramachandran, K.C. Almeroth, and E.M.
Belding-Royer, “Understanding Congestion in IEEE 802.11b
Wireless Networks,” Proc. ACM SIGCOMM, 2005.

[2] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and J. Zahorjan,
“Measurement-Based Characterization of 802.11 in a Hotspot
Setting,” Proc. ACM SIGCOMM, 2005.

[3] A. Kashyap, U. Paul, and S.R. Das, “Deconstructing Inter-
ference Relations in WiFi Networks,” Proc. IEEE Seventh Comm.
Soc. Conf. Sensor Mesh and Ad Hoc Comm. and Networks
(SECON), 2010.

[4] U. Paul, S.R. Das, and R. Maheshwari, “Detecting Selfish Carrier-
Sense Behavior in Wifi Networks by Passive Monitoring,” Proc.
IEEE/IFIP Int’l Conf. Dependable Systems and Networks (DSN), 2010.

[5] “AirMagnet WiFi Analyzer,” http://www.airmagnet.com/
products/wifi_analyzer, 2012.

[6] “AirPatrol’s Wireless Threat Management Solutions,” http://
www.airpatrolcorp.com, 2012.

[7] P. Bahl et al., “DAIR: A Framework for Troubleshooting
Enterprise Wireless Networks Using Desktop Infrastructure,”
Proc. ACM HotNets-IV, 2005.

[8] P. Bahl et al., “Enhancing the Security of Corporate Wi-Fi
Networks Using DAIR,” Proc. ACM/USENIX Mobile Systems,
Applications, and Services (MobiSys), 2006.

[9] Y.-C. Cheng, J. Bellardo, P. Benkö, A.C. Snoeren, G.M. Voelker,
and S. Savage, “Jigsaw: Solving the Puzzle of Enterprise 802.11
Analysis,” Proc. ACM SIGCOMM, 2006.

[10] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, “Analyzing
the MAC-Level Behavior of Wireless Networks in the Wild,” Proc.
ACM SIGCOMM, 2006.

PAUL ET AL.: PASSIVE MEASUREMENT OF INTERFERENCE IN WIFI NETWORKS WITH APPLICATION IN MISBEHAVIOR DETECTION 445

Fig. 10. CDF of “estimation error” for the selfishness metric. Three
different scenarios are presented where number of selfish nodes are
varied (1, 2, or 3) and witness nodes are identified in three different
ways.

Fig. 11. Simulation results for the sparse network.

[11] K. Pelechrinis, G. Yan, S. Eidenbenz, and S.V. Krishnamurthy,
“Detecting Selfish Exploitation of Carrier Sensing in 802.11
Networks,” Proc. IEEE INFOCOM, 2009.

[12] J. Yeo, M. Youssef, and A. Agrawala, “A Framework for Wireless
Lan Monitoring and its Applications,” Proc. Third ACM Workshop
Wireless Security (WiSe), 2004.

[13] J. Padhye, S. Agarwal, V. Padmanabhan, L. Qiu, A. Rao, and B.
Zill, “Estimation of Link Interference in Static Multi-Hop Wireless
Networks,” Proc. Internet Measurement Conf. (IMC), 2005.

[14] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan,
“Measurement-Based Models of Delivery and Interference in
Static Wireless Networks,” Proc. ACM SIGCOMM, 2006.

[15] A. Kashyap, S. Ganguly, and S.R. Das, “A Measurement-Based
Approach to Modeling Link Capacity in 802.11-Based Wireless
Networks,” Proc. ACM MobiCom, 2007.

[16] L. Qiu, Y. Zhang, F. Wang, M.K. Han, and R. Mahajan, “A General
Model of Wireless Interference,” Proc. ACM MobiCom, 2007.

[17] K. Jamieson, B. Hull, A.K. Miu, and H. Balakrishnan, “Under-
standing the Real-World Performance of Carrier Sense,” Proc.
ACM SIGCOMM Workshop Experimental Approaches to Wireless
Network Design and Analysis (E-WIND), Aug. 2005.

[18] H. Chang, V. Misra, and D. Rubenstein, “A General Model and
Analysis of Physical Layer Capture in 802.11 Networks,” Proc.
IEEE INFOCOM, 2006.

[19] S. Das, D. Koutsonikolas, Y. Hu, and D. Peroulis, “Characterizing
Multi-Way Interference in Wireless Mesh Networks,” Proc. First
Int’l Workshop Wireless Network Testbeds, Experimental Evaluation
and Characterization (WINTECH), 2005.

[20] E. Magistretti, O. Gurewitz, and E. Knightly, “Inferring and
Mitigating a Link’s Hindering Transmissions in Managed 802.11
Wireless Networks,” Proc. ACM MobiCom, 2010.

[21] M. Cagalj, S. Ganeriwal, I. Aad, and J.-P. Hubaux, “On Selfish
Behavior in CSMA/CA Networks,” Proc. IEEE INFOCOM, 2005.

[22] S. Radosavac, J.S. Baras, and I. Koutsopoulos, “A Framework for
Mac Protocol Misbehavior Detection in Wireless,” Proc. ACM
Workshop Wireless Security, 2005.

[23] J. Tang, Y. Cheng, Y. Hao, and C. Zhou, “Real-Time Detection of
Selfish Behavior in IEEE 802.11 Wireless Networks,” Proc. IEEE
72nd Vehicular Technology Conf. Fall (VTC-Fall), 2010.

[24] P. Kyasanur and N. Vaidya, “Detection and Handling of Mac
Layer Misbehavior in Wireless Networks,” Proc. IEEE Int’l Conf.
Dependable Systems and Networks (DSN), 2003.

[25] M. Raya, J.-P. Hubaux, and I. Aad, “Domino: A System to Detect
Greedy Behavior in IEEE 802.11 Hotspots,” Proc. ACM Second Int’l
Conf. Mobile Systems, Applications, and Services (MobiSys), 2004.

[26] P. Gupta and P.R. Kumar, “The Capacity of Wireless Networks,”
IEEE Trans. Information Theory, vol. 46, no. 2, pp. 388-404, Mar.
2000.

[27] L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Readings in Speech Recogni-
tion, pp. 267-296, Morgan Kaufmann, 1990.

[28] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Like-
lihood from Incomplete Data via the EM Algorithm,” J. Royal
Statistical Soc. Series B (Methodological), vol. 39, no. 1, pp. 1-38, 1977.

[29] L.E. Baum and J.A. Eagon, “An Inequality with Applications to
Statistical Estimation for Probabilistic Functions of Markov
Processes and to a Model for Ecology,” Bull. Am. Math. Soc.,
vol. 73, pp. 360-363, 1967.

[30] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed
Coordination Function,” IEEE J. Selected Areas in Comm., vol. 18,
no. 3, pp. 535-547, 2000.

[31] S.E. Levinson, L.R. Rabiner, and M.M. Sondhi, “An Introduction
to the Application of the Theory of Probabilistic Functions of a
Markov Process to Automatic Speech Recognition,” Bell System
Technical J., vol. 62, no. 4, pp. 1035-1074, 1983.

[32] S. Rayanchu, A. Mishra, D. Agrawal, S. Saha, and S. Banerjee,
“Diagnosing Wireless Packet Losses in 802.11: Separating Colli-
sion from Weak Signal,” Proc. IEEE INFOCOM, 2008.

[33] A. Kashyap, S.R. Das, and S. Ganguly, “Measurement-Based
Approaches for Accurate Simulation of 802.11-Based Wireless
Networks,” Proc. ACM 11th Int’l Symp. Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM), 2008.

[34] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, J. Zahorjan, and E.
Lazowska, “CRAWDAD Data Set uw/sigcomm2004,” http://
crawdad.cs.dartmouth.edu/uw/sigcomm2004, 2012.

[35] K. Chebrolu, B. Raman, and S. Sen, “Long-Distance 802.11b Links:
Performance Measurements and Experience,” Proc. ACM Mobi-
Com, 2006.

[36] T.S. Rappaport, Wireless Comm.: Principles and Practice. IEEE Press,
1996.

Utpal Paul received the BSc and MSc degrees
in computer science and engineering from the
Bangladesh University of Engineering and Tech-
nology in 2004 and 2007, respectively. He is
working toward the PhD degree in the Computer
Science Department of Stony Brook University.
His research interests include the areas of
protocols, systems, and analysis of wireless
networks with a focus on MAC layer issues in
WiFi, mesh, and sensor networks.

Anand Kashyap received the BTech degree in
computer science and engineering from IIT
Kanpur and the PhD degree in computer science
from Stony Brook University in 2002 and 2008,
respectively. He is a researcher in the Core
Research Group of Symantec Research Labs in
Mountain View, California. Currently, he does
research in computer networking, mobile com-
puting, and the application of machine learning
to these fields.

Ritesh Maheshwari received the BTech degree
in computer science and engineering from IIT
Kharagpur, India, and the PhD degree in
computer science from Stony Brook University
in 2009. Currently, he is working as a senior
performance engineer at Akamai Technologies,
Cambridge, Massachusetts. His research inter-
ests include the general area of computer
networking.

Samir R. Das received the PhD degree in
computer science from Georgia Tech in 1994.
He is a professor in the Computer Science
Department at Stony Brook University. His
research interests include wireless networking,
mobile computing, and performance evaluation.
More information about his research activities
can be obtained from http://www.cs.stonybrook.
edu/~samir.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

446 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 3, MARCH 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

