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Abstract—We investigate a transport layer protocol design that
integrates 3G and WiFi networks, specifically targeting vehicular
mobility. The goal is to move load from the expensive 3G network
to the less expensive WiFi network without hurting the user
experience. As the test platform we choose a nationwide 3G
network and a commercially operated metro-scale WiFi network.
We exploit the often complementary characteristics of these
networks for a hybrid design at the transport layer. To this end,
we modify the stock Linux SCTP implementation to support
‘striping’ across multiple interfaces and the ability to handle
frequent path failures and recovery in a seamless fashion. Instead
of simply striping data over two network connections, we develop
a utility and cost-based formulation that decides the right amount
of load that can be put on the 3G network to maximize the
user’s benefit. We develop and experiment with a transport level
scheduler to do this. We call the new SCTP design as oSCTP,
meaning ‘SCTP to be used for offloading.’ We demonstrate the
effectiveness of oSCTP and show that it is able to deliver superior
network throughput and user experience, while significantly
reducing the load on the 3G network.

I. INTRODUCTION

Many metro-scale WiFi deployments [1] have succeeded

in making WiFi ubiquitous providing very good coverage in

urban spaces. This makes it viable to access WiFi outdoors

even in a mobile scenario at vehicular speeds (see, e.g., [2],

[3], [4]). However, prior studies used either open WiFi access

points (AP) in a metro area or campus networks, where road

coverage may not always be ubiquitous. Our recent experience

with a head-to-head comparison study with metro-scale WiFi

and 3G networks [5] shows that it is possible for WiFi to

deliver competitive or superior performance when continuous

coverage is available, even at vehicular speeds. In general,

WiFi and 3G networks exhibit somewhat complementary

characteristics [6], [5]. Thus, it is indeed possible to exploit

WiFi – which is often free or low cost – to reduce the load

on the expensive 3G networks.1

This idea certainly is not new, and has been promoted by

both networking [6] and policy researchers [7]. Our goal in

this paper is to design and evaluate a hybrid access network
protocol that uses both 3G and WiFi for the best possible

user experience while reducing load on the 3G link. There are

quite a few technical challenges. We address many of them,

1We use the term ‘3G’ somewhat loosely in this paper – to mean current
generation cellular data networks. It does not exclude the so-called ‘4G’
networks, or even lower speed ‘2G’ or ‘2.5G’ networks.

specifically focusing on the vehicular networking scenario
– the most challenging scenario for WiFi. The challenges

are as follows: (i) The WiFi physical layer does not suit

outdoor usage, particularly in long distances. (ii) Transmit

power limitations limit coverage and/or bit rate. (iii) Coverage

limitations give rise to frequent handoffs in a mobile scenario.

(iv) Coverage ‘holes’ may not be uncommon. Thus, the best

way to exploit WiFi would be to exploit ‘diversity’ – where

WiFi is used opportunistically when available, while using 3G

as a backup when WiFi is either not available or provides a

poor bandwidth [6]. Our work takes this approach with a goal

to provide an excellent user experience while saving bits on

the 3G network.

Our work is inspired by the experience we reported in [5],

where WiFi access with vehicular mobility is studied using a

commercially operated ‘metro-scale’ WiFi network. This study

is in contrast with prior studies that only considered open

APs in the wild [3], [2] or a limited WiFi deployment [8],

[4], [9], [6]. This study lays down the salient features of the

two access networks to indicate how a hybrid access network

should be designed. We summarize the results from this

study in Section III. Based on this experience we design and

implement the hybrid network access technique. The novelty

here lies in exploiting network utility and cost functions

(Sections III) for a seamless design. The broad advantage of
this approach is that it can support both networks seamlessly
even with interactive traffic such as streaming, as opposed to
just opportunistic use of WiFi [6] that can only support non-
interactive traffic.

We have spent a considerable effort in the implementation.

The implementation is done at the transport layer using SCTP

(Stream Control Transmission Protocol) [10]. We choose

SCTP for its ability to support multihoming natively. However,

multiplexing transmissions on multiple interfaces (striping) is

not natively supported in SCTP. Thus, we augment SCTP

to support our hybrid access protocol (Section IV) providing

the first such testbed implementation and evaluation that is

reported in literature. We call our augmented transport layer

oSCTP, meaning ‘SCTP to be used for offloading.’ oSCTP can

be best described as concurrent multipath SCTP with resilience

to path failure. We evaluate the performance of oSCTP under

vehicular mobility and demonstrate that the hybrid access

provides significantly greater user experience while saving bits



on the 3G link (Section V).

II. RELATED WORK

A. Vehicular WiFi Access

The potential of using intermittently available WiFi con-

nectivity from moving vehicles for data transfers has been

explored in several experimental studies. In one of the earliest

such attempts, the Drive-thru Internet project [11], [12] has

performed controlled experiments with a single car driving

past a single access point to measure range and connectivity

in an intermittent network. In a more recent work, TCP per-

formance issues have been analyzed in a similar context [13].

Upload performance in the wild using open APs has been

examined in the CarTel project [2]. The ViFi project [4] has

explored link layer performance issues by exploiting macrodi-

versity (using multiple APs simultaneously), and opportunistic

receptions by nearby APs. By the nature of the work, both

CarTel and ViFi focus on upload.

The Cabernet project [3] has studied downloads and inter-

mittent connectivity. They improve handoffs and also propose

a new transport protocol. In general, improving handoff per-

formance under vehicular mobility is an important area of

research. In addition to the Cabernet project [3], Deshpande et

al. [9], and Giannoulis et al. [8] have developed and evaluated

optimized handoffs techniques. One or more of these strategies

can nicely complement our work.

Intermittent connectivity causes problems for applications

that require maintaining a session. This issue is addressed in

some papers [3], [12] by creating a transport layer protocol that

maintains sessions transparently to changing IP addresses. In

our work, this issue does not arise as we use a metro-WiFi

provider where the IP address does not change across handoffs.

B. Mobile Cellular Data Access

Since cellular data networks are closed systems, the scope of

interesting studies is somewhat limited. The studies have been

typically based on measurements on end systems. Some ex-

amples are as follows. In [14] mobile experiments are done in

EVDO networks characterizing cross-layer aspects with TCP.

Bandwidth predictability is evaluated for HSDPA networks

in [15]. A measurement system for city-wide measurement

of WiFi and EVDO networks was developed in [16].

C. Using Multiple Network Interfaces

‘Striping’ across multiple network interfaces (possibly us-

ing different technologies) is a popular method to aggregate

bandwidth. This can be done in the link layer [17], network

layer [18] and transport layer [19] depending on the available

facility and application.

There have been efforts to use striping over multiple WWAN

data links. See, for example, the MAR project in [20] and the

PRISM project in [21].

The Stream Control Transmission Protocol (SCTP) naturally

supports multihoming but does not support the striping func-

tionality. Aggregation efforts over SCTP have been reported in

the cmtSCTP (Concurrent Multipath Transfer SCTP) project

[22], [23]. However, the studies there rely on ns2 simulations

that gloss over realistic network behaviors. Our work is also

based on the multihoming capability of SCTP. But we develop

a prototype system that is specifically optimized for intermit-

tent WiFi connectivity on one of the paths. Our implementation

of SCTP also now includes a scheduler specifically for the

utility model we develop.

A recent paper [6] has addressed the issue of augmenting

mobile 3G using WiFi. The idea is to offload data on WiFi

whenever possible hence avoiding using the 3G link when

WiFi is available. In contrast, our work focuses on using both

3G and WiFi links concurrently, but using a utility model for

scheduling packets on the 3G link. Several papers also provide

head-to-head comparison of 3G and WiFi performances in

the vehicular context showing the promise of the offloading

approach [6], [5].

III. AUGMENTING 3G WITH WIFI

It is instructive to start the technical part of the paper

by summarizing our recent measurement study in [5]. This

study has performed a head-to-head comparison of a ‘metro-

scale’ WiFi network and a 3G network under vehicular

mobility. The metro-scale WiFi network is Cablevision’s (a

regional ISP in the Long Island area of New York) ‘Optimum

WiFi’ [24] providing more than 10,000 access points in the

region. The chosen 3G network is Verizon’s (a nation-wide

cellular provider) EVDO Rev. A network. The experimental

component of the current paper uses the same network. The

relevant observations from the measurement study in [5] are

as follows.

• Instantaneous throughputs on WiFi can be zero occa-

sionally because of lack of coverage on roads (roughly

one-third of the times ). But, roughly one-third of the

times it can deliver significantly high throughput (over

2.5 Mbps). The goal is to exploit these high throughput

regions effectively to move load away from 3G.

• There is a good temporal correlation for the instantaneous

throughputs on both networks, at least for short lags. This

implies a good predictive ability. This will be exploited

in our design.

• Correlation between WiFi and 3G throughputs is poor

signifying that diversity techniques could be successful.

It is quite clear that compared to using 3G alone, a hybrid
access network using both 3G and WiFi has several potentials.

First, it can improve long term average throughput (by approx-

imately a factor of 2 in our experience). Second, with a careful

design, it can reduce the load on the 3G network by simply

choosing to transmit over WiFi as much as possible. The

hybrid access should not use a straightforward striping over

multiple interfaces, as the cost models for these networks could

be very different. On the other hand, avoiding 3G network to

the extreme (e.g., using WiFi opportunistically by postponing

data transfer until WiFi is available [6]) is not appropriate

either. This approach cannot support interactive use very well,

as this provides zero throughput when WiFi is not available.

We focus on a flexible hybrid design that uses both interfaces



intelligently and can – mostly using WiFi except augmenting it
with 3G when appropriate and only to the extent appropriate.

But what is really appropriate? The answer to this question

entirely depends on the application. In order to provide a

general design framework we take the help of network utility

function [25] that models an application’s utility of the avail-

able network throughput. We also model cost of accessing

the network as a function of network throughput. Typically,

a tradeoff exists between utility and cost. Higher throughputs

may not provide any tangible benefit if the additional utility

gained is small, but the cost is considerable.

A download application (elastic traffic) may completely

avoid the 3G link and can still provide acceptable user-

perceived performance. On the other hand, media streaming

with QoS needs will freeze when WiFi is not available or

provides very low bandwidth. This could happen even when

playout buffers are used, though buffers certainly soften the

impact.

Also, the cost model for the links are important input to

the design decision. When the cost of the 3G network is very

low, striping across both networks may be appropriate for most

applications. When it is very high, 3G must be avoided except

when really necessary.

This approach allows us to develop a general-purpose tech-

nique that is not tied to specific applications or cost models.

The existing research (see, e.g., [26], [27] ) does develop

similar models in the context of multiple interfaces. However,

they are not directly useful in our context because they either

require perfect future knowledge [26] or minimizes cost while

provisioning only minimal performance guarantees (simply

stabilizing network queues) [27].

A. Modeling User Benefit

Utility of a flow U(x) is expressed as a function of

throughput x [25]. U(x) describes how much the user values

throughput. For elastic flows, such as TCP downloads – one

of the most prevalent form of traffic on the current generation

Internet, the utility function has a diminishing marginal rate

of increase with increasing throughput. This presents a strictly

concave function. Modeling U(x) as a logarithmic function

has been common in networking literature. We will also take

this approach here. However, our general approach does not
depend on the exact nature of the utility function so long as it
can be specified by the user for the specific service to be used.
Designing utility functions for specific services or applications

is beyond the scope of this paper.

The network service using different types of link defines a

cost function C(x) that also depends on the throughput x on

that link. The difference of U(x) and C(x) models the user’s

benefit that we want to maximize.

For our specific problem, assume that xw and xg are

instantaneous throughputs on the WiFi and the cellular 3G link

respectively. Assume that these throughputs are controllable

by a throttle; however, certain maximum bounds exist, i.e.,

xw ≤ Xw and xg ≤ Xg . Assume that the costs on the two

networks are denoted by Cw(x) and Cg(x), respectively. Then,
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Fig. 1. Example plot of utility, cost and benefit functions, demonstrating the
benefit maximization approach.

we want to maximize

H(xw, xg) = U(xw + xg)− Cw(xw)− Cg(xg).

See Figure 1. As an example, assume Cw(x) to be a constant,

i.e.,

Cw(x) = K1,

and Cg(x) to be a constant plus a linear function of x, i.e.,

Cg(x) = K2 +K3x.

Assume a logarithmic utility function suitable for elastic

traffic:

U(x) = K4 log(x).

With a simple exercise of multivariate optimization it can be

shown that H(xt) is maximized when

xw = Xw

xg =

{
min(Xg,

1
K3

−Xw), ifXw < 1
K3

0, otherwise
(1)

Note that Xw and Xg may not be constant as they may be

dependent on wireless link qualities or available bandwidth.

In that case, the above relationship must hold at all points of

time. If the cost and utility functions are as above, then the

optimal strategy is as follows (see Figure 1).

Strategy 1
1) Use the maximum possible throughput on WiFi

(xw = Xw) at all points of time.

2) If the throughput on WiFi is not sufficient (i.e.,

Xw < 1
K3

), use 3G only to fill in the slack

(i.e., xg = 1
K3

−Xw), but no more. Thus, the

3G link is to be throttled unless the maximum

throughput on 3G is already less than 1
K3

−Xw.

The ‘combined throughput target’ is related to the maximum

possible WiFi throughput (Xw) and the slope of the 3G cost

function (K3). Our goal is to develop a striping mechanism
along with a scheduler that implements the above strategy
once per scheduling interval. The design of the scheduler will

be discussed in the next section.
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While we have used specific formulations, the above tech-
nique allows for modeling any type of utility and cost func-
tions. For example, the utility function can use a simple

thresholding or the cost function could be tiered to reflect

more realistic pricing plans of the 3G networks. Also, note

that we are only concerned here about a single flow’s utility

from the user’s point of view. The technique can be extended

when multiple concurrent flows are present.

B. Scheduling Interval and Throughput Prediction

We need to use throughput prediction for implementing

Strategy 1. This is because in a scheduling interval i, the

3G link may need to be throttled depending on the WiFi

throughput. However, WiFi throughput in scheduling interval

i is not known in advance and thus must be predicted. The

autocorrelation analysis in [5] has shown excellent temporal

correlation for instantaneous throughput values over short time

lags for both 3G and WiFi. We build upon this analysis to esti-

mate how well recent throughputs can predict the throughputs

to be seen in the near future. Our prediction model of choice is

the autoregressive (AR) model. The analysis in [5] has shown

that prediction based on even the single most recent interval

can be very accurate and performs no worse than predicting

over multiple past intervals.

However, the duration of the scheduling interval matters.

In Figure 2 we compare the prediction errors for different

scheduling intervals for both networks. The throughput data

collected in [5] are used. Note that the prediction is poorer

with larger intervals. As expected [5], the 3G throughput can

be better predicted than WiFi.

Looking at Figure 2, errors appear reasonable for WiFi

for 1-5 sec intervals, with median error being within about

5% of the median throughput. For 10 sec. interval, the error

is higher, with median roughly coming within 12%. In the

reported experiments that will follow, we keep the scheduling

interval at 1 sec to minimize prediction errors. We do note

that use of historical location-tagged throughput data (similar

in spirit as in [9]) can improve predictions significantly and

allow use of longer scheduling intervals.

IV. IMPLEMENTATION USING SCTP

The best way to implement the technique outlined above

is to perform striping on the WiFi and 3G interfaces, and

then throttle the 3G link as appropriate. We have adopted a

transport layer solution based on SCTP. Adopting a transport

layer solution makes the technique independent of applica-

tions. Moreover SCTP’s socket interface is quite similar to

TCP. Current TCP based applications can be easily ported to

SCTP. Also, there are utilities like withsctp which translate

TCP library calls to SCTP allowing TCP binaries to run over

SCTP directly.

A. Extending SCTP

SCTP provides reliable transmission and flow and conges-

tion control just like TCP. Additionally it supports multihom-

ing and multiple paths natively. One SCTP association (analo-

gous to a TCP connection) can bind multiple IP addresses

at each endpoint. However, SCTP’s multihoming does not

provide any striping functionality. SCTP chooses a ‘primary’

path for communication by default, switching over to others

only when the primary path fails. Obviously ‘stock’ SCTP

does not satisfy our requirement. We modified Linux Kernel

SCTP (lksctp) [28] to perform striping over multiple interfaces

for bandwidth aggregation. Further, we have enabled throttling

of throughputs on individual paths based on the utility model

described above. We call this version of SCTP that provides

striping and throughput throttling capability oSCTP.

Note that currently an SCTP path is defined by a destination

IP address instead of a source-destination IP address pair. For

our scenario in Figure 3, the server has two paths to the client

whereas the mobile client has only one path to the server.

Therefore, our striping and scheduling techniques only focus

on the streams from server to client, i.e., download streams.

We expect that downloading will be the dominant behavior

for in-car applications. However, there is nothing fundamental

in our technique depending on downloads. It can be extended

to uploads as well. Further, we consider a noise-limited rather

than an interference-limited network. This means that when

link performance is poor, this is only due to noise rather than

interference from competing transmissions. Thus, we do not

consider scheduling across multiple vehicular clients.

Several technical issues crop up when providing striping

functionality to SCTP. Only scheduling packets on two paths

alternatively without other changes results in very poor perfor-

mance. Existing literature has addressed some of these issues

(discussed in Section II-C) but only in a disjointed fashion. It

is unclear how these techniques will work when combined

together. Moveover, their performance has most commonly

been evaluated on simulators like ns2. Striping performance

using SCTP on a testbed in an open multihomed environment

using heterogenous technologies is largely unknown.

In the remainder of this section we describe our two testbeds

on which we evaluate oSCTP; describe how we handle issues

related to congestion control when oSCTP uses multiple paths

concurrently; devise an algorithm that schedules packets across

multiple links; expose problems with SCTP’s path recovery

procedure and propose techniques for quick path recovery.

Finally we describe our implementation of Strategy 1 from

Section III-A to maximize users benefit while using oSCTP.
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Fig. 3. System model.
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Fig. 4. Emulation testbed used for analyzing SCTP
performance. ‘Linux Advanced Routing & Traffic
Control’ and netem are used on the routers to emulate
different transport level data rates, delays and loss
rates.

Fig. 5. Map of the road stretch used for driving
experiments (part of Route 25), along with the route
shown in red. Approximate WiFi coverages are shown
(from [24]).

B. Experimental Testbeds

We have used two types of testbeds. The ‘emulation testbed’

can control rates and latencies of different paths in a controlled

setup in the lab. The ‘vehicular testbed’ is used for field

experiments.

1) Emulation Testbed: The network environment for this

testbed is shown in Figure 4. The two routers are Dell desktops

with two ethernet interfaces using ‘Linux Advanced Routing &

Traffic Control’ and netem to emulate different bandwidths,

delays and loss rates. The server and client are Dell desktops

running Linux. They are connected over 100 Mbps ethernet

links to the routers. The emulation testbed provides a con-

trollable and repeatable environment for evaluation.

2) Vehicular Testbed: Our vehicular testbed uses the same

hardware setup as in our prior work [5]. Briefly, we use

a Dell Latitude D510 laptop running Linux as the mobile

client. The original miniPCI WiFi interface from the laptop is

removed and replaced by a carrier-grade interface (Ubiquity

XR2 [29]) with transmit power set to 25 dBm. The WiFi

card is connected to a high-gain (12 dBi) omni-directional

antenna. The interface uses Atheros chipset supported by

the madwifi driver. The laptop also carries Verizon’s USB-

based USB760 EVDO Rev. A Modem as the second network

interface. The client accesses two heterogeneous wireless

networks – Optimum WiFi’s metro-scale deployment [24] and

Verizon’s EVDO network. Figure 5 shows a stretch of road

of approximately 9 miles where the driving experiments were

done. Some of our experiments, wherever indicated, were done

in stationary settings along the path.

C. Congestion Control

1) SACK-Driven Fast Retransmission: SCTP uses TCP’s

Reno-like congestion control that uses fast retransmission.

Three duplicate CACKs (Cumulative ACKs) trigger the sender

to fast retransmit the unACKed packet with the smallest TSN

(Transmit Sequence Number). We call this CACK-Driven
Fast Retransmission (CD-FRT). For single path situation,

duplicate CACKs mean out-of-order packet arrivals, indicating

possible packet loss. When transmitting on multiple paths con-

currently, out-of-order packets may arrive in a normal course

due to different delays of different paths. This could trigger

multiple duplicate CACKs and fast retransmission, even in

absence of any packet loss. Our emulation experiment shows
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Fig. 6. Throughputs for CACK-driven and SACK-driven fast retransmission
schemes. The rates of the paths are set to 2 Mbps and 1 Mbps in the emulation
testbed. The delay of the 2 Mbps path is fixed at 50 ms. The delay of the
1 Mbps path is varied.

that with the difference of path delays increasing, the fraction

of packets fast retransmitted increases even though there are

no packet losses. The unnecessary fast retransmissions not

only waste the bandwidth, but also prevent congestion window

from advancing normally (when fast transmission happens,

the congestion window of the corresponding path will be

decreased to half) thus adversely affecting the throughput for

the CD-FRT scheme as shown in Figure 6.

With multiple paths with delay differences, duplicate CACK

is no longer a sign of packet loss. We provide an alternate

mechanism to indicate out-of-order packet arrival for each

path individually. Besides CACKs, when the receiver detects

TSN gaps, each received packet after the gap is acknowledged

by a SACK (Selective ACK). We modify the fast retransmit

procedure to work as follows – if three packets sent over a

path with TSN greater than smallest unACKed TSN sent over

the same path have been ACKed then we consider this to be a

sign of packet loss. The smallest unACKed packet on that path

is then fast retransmitted. We call this approach SACK-driven
fast retransmission (SD-FRT). Note this approach retains the

general idea of fast retransmit except that it treats each path

separately.

We have evaluated the benefit of our SD-FRT procedure

on our emulation testbed. Figure 6 shows the throughputs for

the CD-FRT and SD-FRT schemes. In case of SD-FRT, the

unnecessary fast retransmissions are eliminated resulting in

the aggregated throughput being stable over different delays
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Fig. 7. Example trace of different congestion window advancement methods
on the emulation testbed. The rates of both paths are set to 2 Mbps and the
delays are set to 100 ms and 200 ms.

for the 1 Mbps path.
2) SACK- and CACK-Driven Congestion Window Advance-

ment: Out-of-order packet arrival also causes incorrect con-

gestion window advancement. SCTP maintains a congestion

window for each path. By default, congestion window ad-

vancement is driven by incoming new CACKs. We call this

default mechanism as CACK-Driven Congestion Window
Advancement (CD-CWA). As explained before, in oSCTP
the delay difference of the two paths leads to out-of-order

packet arrival at the receiver. This means the receiver will

generate SACKs for each path frequently but generate new

CACKs infrequently. Due to infrequent CACKs the congestion

windows will not advance normally. Our solution to this

problem is to make the congestion window of a path advance

if the unACKed packet with the smallest TSN on a path

is acknowledged by either a SACK or a CACK. We call

this approach SACK-Driven and CACK-Driven Congestion
Window Advancement (SD+CD-CWA). Again, we retain the

general idea of congestion window advancement except each

path is treated separately.

Figure 7 shows the performance advantage of SD+CD-

CWA with respect to CD-CWA. Note that CD-CWA limits the

congestion window advancement (Figure 7(a)), while SD+CD-

CWA allows the congestion window to advance more freely

(Figure 7(b)).2 In this example, the SD+CD-CWA results in a

throughput gain of 40% over the CD-CWA scheme.

We also evaluated the above two approaches on the ve-

hicular testbed. A set of combined notations are used (e.g.,

CD-FRT-CD-CWA, etc.) which should be self-explanatory.

Since actual driving conditions cannot be repeated for protocol

comparisons, we compare our techniques in four stationary

scenarios (with the vehicle stopped at the roadside), where

the WiFi and 3G signal qualities are either weak or strong

resulting in throughputs on the individual paths being low or

high. These four scenarios represent the extreme scenarios that

the mobile client might face. Figure 8 shows the results. Note

that eliminating unnecessary fast retransmission improves the

throughput roughly by 40-60%. Altering the congestion win-

dow advancement procedure to respond to SACKs along with

2Unlike TCP, SCTP increases congestion window only when the current
window is exhausted. Thus, the usual sawtooth pattern of TCP’s congestion
window is not seen in Figure 7.
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Fig. 8. Average throughputs in four different scenarios with different signal
qualities on the WiFi and 3G links as evaluated on the vehicular testbed.
Three different combinations of the two fast retransmit and congestion window
advancement methods are shown along with ‘WiFi only’ and ‘3G only’ for
baseline comparisons.

CACKs improves the throughput by approximately 5-20%

over the CACK only approach. Also, ‘WiFi only’ or ‘3G only’

provides higher throughput relative to use of both links when

the other link is weak. This is because of the use of round-

robin scheduling that disregards quality of the links. We will

now address scheduling in the following subsection.

D. Scheduling Paths

Until now, in all our experiments, packets arriving from

the upper layer are scheduled alternately on the two paths

in Round-Robin fashion. As we have seen in Figure 8, this

simple strategy is not efficient. The throughput tends to get

bounded by two times the throughput of the path with smaller

bandwidth. If one thinks carefully, there are two pieces to

this problem. (i) Packets must be scheduled on a path as long

as the congestion window on the path is open. (ii) Sequence

number holes in the receive window should be avoided. Since

the receiver relays packets to the upper layer in sequence,

existence of holes simply prevents the receive buffer from

flushing. The simple Round-Robin scheduler does not address

any of these two issues. We propose two strategies which try

to schedule packets so as to address the above two concerns.

• Lazy: Schedule packets on the current path until the

congestion window exhausts and then switch to the other.

• Smallest RTT: Always schedule packets on the path with

the smallest RTT that has congestion window open.

We have implemented the above described schedulers as part

of oSCTP and compared their performance to the Round-
Robin scheduler. Figure 9(a) shows the throughputs of the

three schedulers on the emulation testbed with different path

characteristics. The Ideal plot is simply the sum of the band-

width of the two paths. Note that in both Figures 9(a) and 9(b)

the Round-Robin scheme provides an aggregated throughput of

two times the path with lesser bandwidth. The Lazy scheduler

tends to out-perform the Round-Robin scheduler only when the

disparity in the bandwidths of the two paths or the delays of the

two paths is large. The Smallest RTT scheduler’s throughput

is almost equal (closer than 90%) to the Ideal as it addresses

the above two issues.
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Fig. 9. Performance of different schedulers on the emulation testbed. The
characteristics of the two paths are shown in the subheadings.
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Fig. 10. Throughput comparison of the three schedulers on the vehicular
testbed in four different scenarios with different signal qualities on the WiFi
and 3G links.

Figure 10 shows the throughput comparison of the three

schedulers on the vehicular testbed in four different scenarios

as in Section IV-C2. The Smallest RTT scheduler always has

the best performance. It achieves almost about 90% of the

combined throughputs of WiFi only and 3G only in most

scenarios. Our analysis shows Smallest RTT to be the best

choice for the scheduler. In the remainder of our analysis we

choose Smallest RTT as our default scheduler.

E. Resilience to Path Failure

Both WiFi and 3G connections oscillate greatly in the

moving vehicle. SCTP recovers from path failure by choosing

an alternate path to its peer node. This recovery, however, is

very slow. There are two parts to this problem. We elaborate

on each of them and provide solutions.

1) Recovery from Path Failure: The default mechanism of

SCTP to detect path failure is painfully slow for vehicular

scenarios where frequent failures may occur on the WiFi link.

In stock SCTP, a path is considered ‘failed’ only when 4

successive re-transmission attempts fail to elicit an ACK. Since

these re-transmission attempts happen after exponentially in-

creasing backoffs, the failure detection can take a long time,

often more than 60 sec.

Since the packets scheduled on the failed path do not arrive

at the receiver, this creates holes in the receive buffer prevent-

ing it from flushing. This makes the aggregated throughput

drop to zero until the server identifies that the path has

failed and re-schedules the packets on the other path. An
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Fig. 11. Trace of instantaneous SCTP throughput showing impact of path
failure. Both paths are set to 2 Mbps with 50 ms delay on the emulation
testbed. At 20 sec, one path is forced to fail.

experiment on the emulation testbed demonstrates this. See

Figure 11. With the default scheduling, one path failure leads

the throughput to zero. Only after 60 seconds, the throughput

settles back at the bandwidth provided by the other, live, path.

Our implementation of oSCTP designates a path on which

a retransmission timeout has occurred as failed. In addition

to SCTP’s default procedure to re-designate a path as ‘alive,’

oSCTP also re-designates the path as alive if any outstanding

packet is ACKed on such a failed path.3 With this improve-

ment, upon path failure the aggregate throughput settles to that

provided by the live path. See Figure 11.

2) Preventing Loss of ACKs: Recall that in SCTP a path

is defined by the destination address only. This means that

in our system model in Figure 3, from SCTP’s perspective,

there are two paths from the server to the client, but only

one path from the client to the server. A packet’s source IP

address is determined by the source node’s IP layer and not

by SCTP. Thus, the client’s IP layer can choose any one of

the two paths for sending back ACKs. If the path chosen to

send back ACKs fails and the IP layer remains oblivious to

this fact, then it will continue to schedule the ACKs on this

path leading to zero throughput. In this case, since the server

does not receive ACKs for its transmissions on either paths,

the server considers the entire SCTP association to be broken.

Figure 12(a) demonstrates this problem showing the aggregate

throughput going down to zero as the client moves away from

a WiFi AP on our vehicular testbed.

We address this issue by making oSCTP on the client

explicitly choose a source IP address for the outgoing ACKs.

oSCTP chooses the source IP address of an ACK to be the last

received packet’s destination IP address. This ensures that the

ACK is sent over a live path. Figure 13 shows a trace of ACK

throughputs at the server. The path carrying the ACKs fails

at 10 sec. When one path fails, data transfer continues on the

other path unhindered when the ACKs have an appropriate

source address. The resulting improvement in throughput is

shown in Figure 12(b), as client continues to use the available

3G path to deliver ACKs.

3SCTP’s default mechanism to test whether a failed path has been back to
life is to send heartbeat messages on it every 30 sec. We have taken a more
proactive approach by having oSCTP to send heartbeats every 1 sec.
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Fig. 12. Trace of instantaneous throughputs and signal quality demonstrating
impact of path failure and choosing the right path for the ACKs. The vehicular
testbed is used. The WiFi path fails at around 10 sec.
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The overall gain of adding resiliency to path failures to

oSCTP is shown in Figure 14. To emulate intermittent con-

nections caused by vehicular mobility, one path is taken down

at 60 sec and remains down for an interval of time and then is

brought back up for 60 sec again. This experiment is repeated

10 times and the average throughput is reported for different

failure duration. By employing resilience to path failure the

aggregate throughput obtained is around 95% of the ideal

throughput.

F. Throughput Prediction and Packet Scheduling

Our goal is to implement Strategy 1 described in Sec-

tion III-A on the SCTP server in each scheduling interval

(chosen to be 1 sec). For each scheduling interval i, the
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available bandwidth Xi
w on the WiFi path is measured on the

server side by simply calculating the number of bytes acked

in the i-th interval. xi
g is determined using Equation 1 (or,

Strategy 1). Note that in step 2, Xi
w must now be estimated

as this value needs to be known at the start of the interval

i. The measured value of Xi−1
w in the prior interval is used

to estimate Xi
w. See the discussion in Section III-B. Since

the scheduling interval is 1 sec, it just means that the 3G

path must carry a maximum of xi
g bits in the interval i. This

can be achieved via a simple modification of path scheduling

described in Section IV-D. The 3G path is used only until xi
g

bits are transmitted in each scheduling interval.

Ordinarily, oSCTP does not know which path is the 3G link.

We address this issue by letting the ‘primary path’ to always

denote that path where bits should be saved. The user can

easily set 3G link as ‘primary path’ in oSCTP’s socket API.

V. EVALUATION OF HYBRID ACCESS

We now evaluate oSCTP for hybrid WiFi and 3G access

under vehicular mobility. The vehicular testbed as described

in IV-B is used. In the reported experiments, no optimization is

done for the WiFi link layer handoff. Stock madwifi driver

implementation is used. Thus, the WiFi performance results

could only be improved if handoff or packet forwarding opti-

mizations [30], [31] are used. The WiFi network retains the IP

address across handoffs, even after temporary disconnections.

Thus, there is no network layer handoff latency. The interested

reader can look at [5] for further details about the network

environment. The driving experiments are done on the stretch

of road showed in Figure 5. The average driving speed is about

40 mph and the highest speed can be as fast as 50 mph.

A. Baseline Striping Performance

We first evaluate striping performance with oSCTP. Here,

both interfaces are used together to obtain the maximum

possible aggregate throughput. The utility-cost model is not

considered as there is no throttling on the 3G path. For the

performance analysis, three different sets of drives are done on

the same stretch of road in the same direction, first measuring

WiFi and 3G performance in an isolated fashion, and then

measuring striping performance with oSCTP as implemented



Combined throughput target 2 Mb/s 900 Kb/s 600 Kb/s

Avg. aggregate throughput 1.43 Mb/s 1.27 Mb/s 1.21 Mb/s
How often 3G fired 77% 62% 52%

Fraction of load carried on 3G 37% 26% 19%

TABLE I
AVERAGE THROUGHPUTS AND 3G LINK USAGE FOR THE THREE

THROUGHPUT TARGETS FOR OSCTP-BASED SCHEDULING. AVERAGE

THROUGHPUT WOULD BE APPROXIMATELY 700 KBPS IF ONLY 3G LINK

USED.

in the previous section. Instantaneous throughputs (average of

per-second throughputs) are logged.

Figure 15 shows the CDF of instantaneous throughputs

for the three experiments. Note zero WiFi throughput for

about 40% of times (likely because of lack of coverage), but

superlative throughput (close to 3 Mbps) for about 25% of

times. The aggregated throughput achieved via striping with

oSCTP is obviously far superior. The median is roughly the

sum of the median of WiFi and 3G individually. The average

aggregated oSCTP throughput is also similar – roughly 85%

of the sum of the average of WiFi and 3G.

B. Scheduling Performance

We now evaluate the performance of the oSCTP-based

scheduler implementing Strategy 1. For this evaluation, the

only input parameters are the ‘combined throughput target’

or the value of 1
K3

(see Section III-A) and the scheduling

interval (see Section III-B). We choose three different values

for this target, viz., 2 Mbps, 900 Kbps and 600 Kbps. These

target values are respectively much higher, somewhat similar

and lower than the average 3G throughput. In each case the

scheduling interval is chosen to be 1 second. We performed

two drives for each of these targets and present averaged

results.

Table I summarizes the results of the driving experiments.

Note that the average throughput is much less than the target

for 2 Mbps, and is much better for the other two targets. This

is simply because the network overall often lacks 2 Mbps

capacity, but more frequently can offer the other two lower

throughput targets. This is also apparent from Figure 15.

Note that we are able to reach much higher averages for the

two lower targets, simply because WiFi sometimes provides

a superlative throughput and our strategy never throttles the

WiFi link. Also note that for larger throughput targets, 3G

is fired in more scheduling intervals and the fraction of total

load carried by 3G is also more. But, overall this fraction is

small and varies between 19–37% for our chosen range of

throughput targets. This obviously means a significant saving

of bits on the 3G network.

We also investigate the performance of the underlying

scheduler. See Figure 16. Two types of performance metrics

are presented. The first one is the prediction error. Note that

in implementing Strategy 1, we use the WiFi throughput

in the previous scheduling interval to estimate the same in

the current scheduling interval. The CDF of the prediction

error (normalized by the target throughput) is presented in

Figure 16(a). We note that a large zero error region is due

to the fact the zero throughput on WiFi is typically very

accurately predicted and such zero throughput regions are

frequent (about 40% of the times).

The second metric we evaluate is actual scheduling perfor-

mance. This is related to how much load the 3G link actually

carries versus how much load the scheduler should schedule

on the 3G link in each scheduling interval. We normalize

their difference (’actually carried’ − ‘should carry’) by the

throughput target and present the CDF in Figure 16(b). Note

that the negative differences are significant for higher through-

put targets. This is attributed to 3G link lacking capacity and

not being able to reach its target 1
K3

− Xw. For the lowest

throughput target (600 Kbps) this issue is less of a problem

and the difference reduces and can be explained mostly by

the prediction errors. For the case of positive differences, it is

mostly explained by the prediction error.

It is also of interest evaluating how much scheduling error

our implementation introduces. This is a similar normalized

difference as above. However, in the intervals where 3G is fired

but the aggregate throughput is less than the throughput target,

the inability to reach target is typically not an error introduced

in the scheduler. This is due to the lack of enough capacity

in the network. Assuming the scheduling error to be zero in

such intervals, we plot another CDF for the same quantity as

in Figure 16(b). The new plot is in Figure 16(c). Note that the

roughly 90% of the times the error within ±0.2.

VI. CONCLUSIONS AND FUTURE WORK

We have developed a transport layer protocol based on

SCTP to move bits from expensive cellular data networks

to relatively cheaper WiFi networks. The focus has been

to support vehicular mobility. We have developed a general

purpose utility and cost function-based formulation and a

scheduling system that follows such models. The scheduling

system is designed to delivers the optimal benefit to the user

based on the chosen utility and cost models. We implement

our scheduling system as part of our modified Linux SCTP

implementation (called oSCTP) that allows for concurrent use

of both paths. The utility function may be application specific

and can be chosen from a library of functions, by associating

applications with utility functions. It is also possible to provide

the user with an interface to dial up or down the utility

dynamically.

We have addressed a range of issues that arise when building

an SCTP implementation that supports striping in a mobile

context, e.g., congestion control, path scheduling and overcom-

ing path failure. We have also provided striping performance

results in an open multihomed environment using different

technologies. Our driving experiments using oSCTP-based

scheduler shows roughly 65%-80% overall load reduction on

the 3G network by exploiting a metro-scale WiFi network.

While our experiments are indeed limited with straightfor-

ward choices of utility and cost models, the general trend they

demonstrate is very promising. We hope that our experience

will encourage service providers to deploy more metro-scale
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Fig. 16. Evaluation of the oSCTP-based scheduler for three different throughput targets in the driving experiments. See the text for explanation.

WiFi networks with even better road-side coverage and inte-

grate WiFi and 3G networks more tightly.

Several unaddressed issues remain. WiFi being on a license-

free band can potentially become congested even when the

operator has provisioned the network well. This will likely

limit its throughput benefits. On the other hand, new tech-

nologies such as 802.11n and 802.11r can provide potential for

higher throughputs and faster handoffs making WiFi use even

more productive than reported here. Finally, use of multiple

interfaces concurrently increase the energy cost. This will be

an issue for a smartphone or tablet like device. However,

energy itself can be a part of the utility-cost model. We will

investigate this in a future work.
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