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Abstract�Wireless interference is the major cause of degra-
dation of capacity in 802.11 wireless networks. We present an
approach to estimate the interference between nodes and links in
a live wireless network by passive monitoring of wireless traf�c.
This does not require any controlled experiments, injection of
probe traf�c in the network, or even access to the network
nodes. Our approach requires deploying multiple sniffers across
the network to capture wireless traf�c traces. These traces are
then analyzed to infer the interference relations between nodes
and links. We model the 802.11 MAC as a Hidden Markov
Model (HMM), and use a machine learning approach to learn
the state transition probabilities in this model using the observed
trace. This coupled with an estimation of collision probabilities
helps us to deduce the interference relationships. We show the
effectiveness of this method against simpler heuristics, and also
a pro�ling-based method that requires active measurements.
Experimental results demonstrate that the proposed approach is
signi�cantly more accurate than heuristics and quite competitive
with active measurements. We also validate the approach in a
real WLAN environment.

I. INTRODUCTION

Poor WiFi network performance in congested scenarios has

been well-documented measurement literature [10], [19]. The

goal of our work is to model and understand the wireless in-

terference between network nodes and links in a real WiFi net-

work installation, either a WLAN or a mesh network. From a

practical standpoint, we need to do this in the most unobtrusive

fashion possible, (i) without installing any monitoring software

on the network nodes, and (ii) using a completely passive

technique. The need for (i) comes from a matter of practicality.

Many APs are often closed devices, and clients may not be

always accessible for monitoring software installations. The

need for (ii) is more obvious. Active measurements impact

(and are impacted by) network traf�c. Our approach thus

requires the use of a distributed set of `sniffers' that capture

and record wireless frame traces. The traces are then analyzed

to understand the interference relations. While this approach

requires additional hardware for measurement, one can view

this as a form of third-party solution. Such independent third-

party solutions for wireless monitoring are not uncommon in

industry [1]. The research world has also provided similar

approaches. See, for example, DAIR [2], [3], Jigsaw [7] and

Wit [13]. While these approaches provide many monitoring

solutions, they still do not provide fundamental understanding

of interference relations between network nodes and links.

Our approach can be used as a toolbox to understand the
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Fig. 1. Overview of the approach.

interference properties in an arbitrary WiFi network, regardless

of the topology or architecture. It determines both sender and

receiver-side interferences. See Figure 1. More speci�cally,

it determines for each link (or node), which other links (or

nodes) it interferes with, as well as the extent or degree of

interference. This can help the system managers to perform

capacity planning and perform appropriate radio resource

management, such as use of channels, transmit powers or

directional antennas. In addition, this can provide a signi�cant

insight about WiFi interference behavior in large installations,

potentially in�uencing future standards design.

A. Approach

A distributed set of `sniffers' collect traf�c traces from

the live network. These sniffers do not transmit any packets

making the method completely unobtrusive. The traf�c traces

are then merged and analyzed to determine the interference

between node/link pairs (Figure 1). Merging of traf�c traces

is an important problem by itself. Here, we bene�t from

existing work [23], [13], [7] that developed merging techniques

with distributed sniffers.1 Then, a machine learning approach

is used to analyze the merged traces to infer interference

relationships.

Since the approach is completely passive, it is only depen-

dent on the suf�ciency of the available network traf�c for the

interference analysis. The challenge in this case is to make

accurate estimates even in presence of little traf�c, and traf�c

of unknown and arbitrary nature. This is important as all

network APs may not be heavily used all the time. In our

1These techniques also infer and add the packets that are missing from the
merged trace.
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experience in realistic settings typically about 20 mins long

trace is suf�cient to determine the interference properties. But

it does depend on the nature of actual network traf�c. There

are indeed many other issues related to the location of the

sniffers and �delity of the merged traces that will impact the

accuracy of the technique to a varying degree. However, these

are independent issues and have been discussed in related

literature [21].

We will discuss related work in Section II and the broad

approach in Section III. The details of the HMM-based formu-

lation will be covered in Section IV. Sections V and VI contain

the experimental evaluations. We will conclude in Section VII.

II. RELATED WORK

A. Analyzing Interference

Interference in an 802.11 wireless network can be readily

measured directly. The authors in [14] outline a method to do

this with only 𝑂(𝑛2) measurements for an 𝑛 node network. A

more sophisticated approach does not perform direct measure-

ments, but uses certain modeling steps to reduce the number

of measurements to 𝑂(𝑛) assuming that a pro�ling study

describing the deferral and packet capture behavior of the

radio interfaces are available. Different variations of this basic

approach have been presented in [18], [11], [15]. This method

is still unrealistic in live networks as the RSS measurements

need a quiet, interference-free environment. Also, the pro�ling

study must be available.

B. Using Distributed Sniffers

In contrast to the above methods requiring active measure-

ments, we use passive monitoring of a live network using dis-

tributed sniffers. Previous studies have used distributed sniffers

to conduct a range of measurements over live networks to learn

various properties such as congestion [10], protocol behavior

in a hotspot setting [19]. Bahl et al. also has used such an

approach in DAIR for troubleshooting [2] and security [3].

While earlier studies were conducted by analyzing individ-

ual traces, Yeo et al are the �rst to provide a technique to

merge individual traces to create a uni�ed view of the network

activity [23]. This uni�ed trace, created using common refer-

ences of beacons across traces, provides more opportunities

to analyze the link level characteristics of a wireless network.

Cheng et al. apply this technique for a large scale sniffer

deployment to create a system called Jigsaw [7], which they

use to perform fault diagnosis across multiple network layers

in the network [6]. Mahajan et al. develop a system called Wit,

where they advance the technique of Yeo et al. of merging

traces by proposing an inference engine to guess any missing

packets [13]. In our work, we employ a similar technique to

merge individual traces into a uni�ed trace. However, unlike

the above studies which focus on understanding MAC level

behavior, anomaly or fault detection, our focus is on learning

the interference in the network.

A recent work by Schulman et al. questions the �delity of

such traces generated by multiple sniffers [20]. They argue that

in a high load scenario, a large number of packets are lost and

the timestamps of the packets may not be accurate due to clock

drifts. Thus, the uni�ed trace depicts an incomplete picture of

network activity, and any inference based on that may be inac-

curate. Our technique relies on having suf�cient information

rather than complete information. More is discussed about this

aspect in Section III-B.

Finally, in [21] authors analyze the �delity of COTS 802.11

sniffers. They observe that while �delity does vary across

devices and also is sensitive to locations, �delity can be easily

improved by a careful device selection and redundant use of

sniffers.

III. OVERALL APPROACH

A. Problem Statement

We restrict our de�nition of interference to only those

arising from 802.11 sources (can be both in-network or outside

network source), and not due to another radio technology, e.g.,

bluetooth. The latter type of interference cannot be captured

using packet level analysis that we will do here.

In 802.11, two nodes interfere when they cannot transmit

at the same time. Similarly, two links interfere when they

cannot successfully receive (which subsumes transmission)

at the same time. Another way to describe is to say that

the interference can happen either at the `sender side' or at

the `receiver side' (or both) [11]. On the sender side, the

interference is because of deferral due to carrier sense. On

the receiver side, it is because of packet collisions that require

packet retransmission. In both cases, the sender additionally

has to go through a backoff period, when the medium must

be sensed idle.2 The net effect of the interference is reduction

of throughput capacity of the network.

For modeling convenience, we consider interference be-

tween node or link pairs only. Due to the additive nature of

the received power, a given link in reality interferes with a

set of other links (so called `physical interference') [9]. This

is because a single transmission may not generate enough

power to cause deferral or collision for the given link, how-

ever, multiple such transmissions may still cause deferral

or collision. However, pairwise consideration can still bring

up a useful picture of interference. Also, in reality multiple

concurrent packet transmissions may actually be rare even

when there are many active �ows in the network. For example,

using a major trace collected during the SIGCOMM 2004

conference, the authors in [13] showed that only 0.45% of

packets actually overlapped in transmission. Thus, learning

more elaborate higher order interference relationships may not

be very useful in practice. We do note that this simpli�cation is

not fundamental to our basic technique. The technique can be

extended, albeit with higher computational cost, to physical

interference. We will discuss this again in the conclusions

section.

In wireless networks, interference is probabilistic because

of the inherent �uctuation of the signal power due to fading

2We are assuming that the reader has an overall idea of the 802.11 MAC
protocol. Speci�c details will be brought up as necessary.
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effects and probabilistic dependency of error rates with SINR

(signal to interference plus noise ratio). Prior measurement and

modeling studies have elaborated on this aspect [14], [11]. It

is thus best to characterize the interference as a probability.

Thus, our goal is to estimate via passive monitoring the non-

binary, pairwise interference between any two network nodes

or links, in terms of probability of interference. For every link

pair, the probability of interference is given by:

𝑝𝑑 + (1− 𝑝𝑑)𝑝𝑐, (1)

where 𝑝𝑑 is the `probability of deferral' between the senders,

and 𝑝𝑐 is the `probability of collision' at the receivers if

both senders transmit together.3 See also Figure 1. When

considering node pairs only, probability of interference is just

𝑝𝑑.

B. Discussions

The major challenge of using passive monitoring is that one

can identify whether two nodes or links interfere only if they

both have packets to transmit at the same time. Obviously, the

observed behavior of two links that otherwise would interfere,

but never transmit together in practice, is no different from

the case when the links do not interfere. Thus, our approach

is based on the conjecture that if we observe live network

traf�c for long enough period, such instances will arise where

simultaneous transmissions are attempted in the network for

each link pair. Thus, interference between all link pairs can be

estimated. Our goal is to (i) identify such instances, and (ii)

infer the interference behavior during such instances. There

are several challenges here that we discuss in the following.

1) Generating Uni�ed Trace: Traces are collected by de-

ploying several sniffers in the network for each channel to be

monitored. While exact location of the sniffers can impact

the accuracy of the results, our strategy is to simply have

enough sniffers so that a large percentage of frames that were

transmitted by every node could be captured by at least one

sniffer [21]. Having a large number of sniffers alleviates the

problem of positioning them optimally which is a complex

problem by itself.

The individual traces from the sniffers are merged to pro-

duce a single complete trace with a common time base that

will be analyzed. We use a technique similar to that proposed

in recent literature by Yeo et. al. [23] to merge the traces. The

basic idea is to look for beacons common to multiple sniffers

and synchronize the packet timestamps in accordance with the

timestamps of these beacons, so that the �nal merged trace has

a uniform time base.

It has been argued recently that such uni�ed traces may suf-

fer from two major problems � possibility of missing packets

due to collisions or packet losses at sniffers, and timing errors

due to clock synchronization errors [20]. These problems

may render the uni�ed trace incomplete and incorrect, thus

jeopardizing its applicability for network analysis. For the

3This de�nition ignores ACKs for modeling and notational convenience as
in [14], [11], and is not a limitation. We indeed use unicast traf�c with ACKs
for evaluation.

�rst issue, a technique of inferring missing packets has been

suggested in [13] that can be used to complete the trace to a

large extent. Even if the trace is incomplete, if it carries the

same statistical relationships as a complete trace would, then

our method should still be effective.

For the issue of timing problems, [20] shows that the drift

between AP clock and sniffer clock is signi�cantly large

even within a single beacon interval of 50ms. Inaccuracy in

timestamps can signi�cantly affect our method, as will be

apparent later. However, we expect that each sniffer would

have a large number of unique APs it can hear beacons

from. The frequency of occurrence of such common beacons

between traces would be much higher than once every beacon

interval, and so the packet timestamps will be synchronized

at much smaller time scales. This should reduce the timing

errors as the clock would be adjusted before the clock drift

becomes too large.

Regardless, it is indeed a challenging problem to create a

reasonably complete and accurate uni�ed trace for analysis.

In [20], a metric has been proposed to measure the quality

of a uni�ed trace in terms of its completeness. It can aid our

method as it is possible to choose only parts of the trace for

analysis that have a high score for this metric.

2) Unknown Load: The monitoring infrastructure cannot

look at the packet queues of the transmitters and does not

know when a packet captured in trace was indeed ready

for transmission. Interference modeling is fundamentally hard

if the offered load is not known. To see this, assume that

frames from two senders alternate in the merged trace during

an observation period, and no two frames overlap in time.

This could indicate that the senders interfere. However, it is

also possible that they do not interfere and just happen to

transmit in an alternate fashion following a speci�c packet

arrival pattern from the upper layer. Analysis of inter-packet

times, however, can provide certain con�dence � a strategy

we will utilize. For example, if the inter-packet times are such

that they could be produced by backoffs, this increases the

con�dence that the two transmitters indeed interfere and are

carrying saturated loads for the period of observation. But this

requires accurate timing analysis.

On the other hand, simpler methods are possible if saturated

periods can be correctly identi�ed. For example, one can

use a moving time window on the merged trace and look

for window positions where two transmitting nodes share the

available bandwidth within the window to the same extent

that two saturated interfering senders would. If such instances

are found, then the two nodes can be declared interfering.

However, choosing the correct window size is a dif�cult

problem. A large window will rarely get saturated, while a

small window will contain too few frames to provide enough

statistical con�dence.

3) Use of Straightforward Heuristics: Straightforward

heuristics have limited ability in inferring interference from

packet traces. The argument in the previous subsection points

out one such issue, as offered load is typically unknown and

searching for saturated portions in the trace can be hard. Sim-
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ilar other heuristics are hard to design as well. For example,

two packet transmissions overlapping in time may indicate

that the two respective senders do not interfere. However,

concluding that these senders are non-interfering from few

such instances may be inaccurate. This is because the reason

of this packet overlap may be due to backoff intervals counting

down to zero at the same instance. Another reason could be

that the interference between such senders is probabilistic.

Thus, suf�cient statistics is needed to develop an accurate

estimate.

C. Approach

Thus, to determine interference relationships in the network

links, one needs a rigorous statistical modeling approach,

instead of relying on heuristic-based trace analysis. The basic

idea is as follows (see Figure 1).

Sender-side: We model the sender-side of the interacting

link pairs in the network via a Markov chain based on the

MAC layer operation of 802.11. The parameters of this chain

(essentially the state transition probabilities) depend on their

interference relationship (speci�cally, deferral probability, 𝑝𝑑).
These parameters are estimated from the observed trace using

an approach based on the Hidden Markov Model (HMM) [16]

These parameters in turn can estimate the deferral probability.

We will spend the entire Section IV describing the HMM-

based approach.

Receiver-side: The receiver-side interference results in col-

lisions. Collisions can be detected relatively easily since col-

lisions result in retransmissions.4 Retransmitted packets are

identi�ed by the set `retransmit bit' in the frame header. A

retransmitted frame, say 𝑅, can be correlated back to the

original frame, say 𝑃 , that has not been received correctly

as both these frames carry the same sequence number. Any

frame 𝑆 from a different sender overlapping with 𝑃 is a

potential cause of collision. If no such 𝑃 exists, the packet loss

is due to wireless channel errors rather than collisions [17],

[13]. Because of the probabilistic nature of packet capture,

suf�cient statistics need to be built up to determine receiver-

side interference. This is because frames like 𝑆 and 𝑃 , even

when overlapping, may not always result in a collision. Thus,

the number of times they collide as a fraction of the number

of times they are overlapping would determine the probability

of collision 𝑝𝑐.

IV. HIDDEN MARKOV MODEL FOR SENDER-SIDE

INTERACTIONS

A hidden Markov model (HMM) [16] consists of a system

modeled as a Markov chain with unknown parameters, where

the states of the Markov chain are not directly visible, but

some observation symbols in�uenced by the states are visible.

There are standard methods [16], [8], [4] to learn the unknown

parameters (such as the state transition probabilities of the

Markov chain) using the observed sequence of observation

symbols. HMMs have been used in various machine learning

4For unicast transmissions only. But unicasts are much more frequent
relative to broadcasts in a real network packet trace.
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Fig. 2. State transition diagram for a single sender. CS = 0 (CS=1) means
that the carrier is sensed idle (busy). Q = 0 (Q =1) means that the interface
packet queue is empty (non-empty).

�elds such as pattern, speech and handwriting recognition. We

will be using the HMM approach for inferring sender-side

interference relations between pairs of senders in an 802.11

network.

A. Markov Chain

The 802.11 MAC protocol can be modeled as a Markov

chain for each sender [5], [11]. An 802.11 sender, say 𝑋 ,

resides in one of the following four states - `idle,' `backoff,'

`defer,' and `transmit.' In the idle state, the sender does not

have any packet to transmit (interface packet queue empty). In

all other states the sender has at least one packet to transmit.

In the backoff state, the sender is backing off, waiting for

its backoff countdown timer to expire. In the defer state, the

sender is sensing carrier to be busy and it is thus `defering' to

another transmission. In this state, the backoff timer, if already

started, is frozen. In the transmit state, the sender is actually

transmitting a frame. These four states capture the essence

of the 802.11 MAC protocol. We are intentionally ignoring

interframe spacings (e.g., DIFS) to keep the chain description

simple.

Let us call the 4 states 𝑖𝑑, 𝑏𝑘, 𝑑𝑒, and 𝑡𝑥, respectively for

brevity. At a high level, the 802.11 MAC works as follows. The

sender remains in the 𝑖𝑑 state until it has a packet to transmit.

When it has a packet to transmit, it senses carrier. If carrier is

idle, it enters the 𝑡𝑥 state. See Figure 2. If carrier is busy, it

enters the 𝑑𝑒 state. It comes out of 𝑑𝑒 when carrier is turned

idle. It then goes to the 𝑏𝑘 state, chooses a random backoff

interval, and then goes to the 𝑡𝑥 state once the countdown of

the backoff timer is complete. If the sender senses carrier busy

while in the 𝑏𝑘 state, it must defer the transmission. It then

goes into the 𝑑𝑒 state, from which it comes back to the 𝑏𝑘 state

once the carrier is idle again. The backoff countdown timer is

frozen while in the 𝑑𝑒 state. Thus, the sender completes the

remaining backoff time when it comes back to the 𝑏𝑘 state.

After the transmission completes in the 𝑡𝑥 state, the sender

goes back to the 𝑖𝑑 state, if it has no other packet to transmit.

Otherwise, it goes back to the 𝑏𝑘 state after choosing another
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(sender side only). Note that some arrows are bidirectional.

random backoff interval. The state transition probabilities

between 𝑏𝑘 and 𝑑𝑒 depend on the state of other nodes (i.e.,

transmitting or not) in the network, and the deferral proba-

bilities between the sender and these nodes. Similar argument

applies for the transition probability from 𝑖𝑑 to 𝑑𝑒 and 𝑡𝑥, and
transition probability from 𝑡𝑥 to 𝑑𝑒 and 𝑏𝑘.

Since the transmissions from other nodes impact the state

transitions for a given node, a combined Markov model needs

to be considered to get a complete picture of the network

behavior. Here, each state is a tuple consisting of states

of individual nodes. Such a Markov chain would lead to a

state space explosion with exponential number of states, and

would thus be intractable. Since our focus in this work is

on determining the pairwise interference relationships, we can

restrict ourselves to the consideration of a combined Markov

chain for only a pair of nodes, say 𝑋 and 𝑌 . Each state

in this Markov chain is a 2-tuple consisting of the states of

𝑋 and 𝑌 . For example, the state where 𝑋 transmits and 𝑌
defers would be ⟨𝑡𝑥, 𝑑𝑒⟩. There could be 16 possible states

in theory. However, 5 of them are not legal (e.g., ⟨𝑑𝑒, 𝑑𝑒⟩,
⟨𝑑𝑒, 𝑏𝑘⟩ etc.5), leaving 11 possible states. See Figure 3 for the

combined Markov chain.

In this Markov chain, the state transition probability be-

tween certain states depends on deferral probabilities between

𝑋 and 𝑌 . For example, from state ⟨𝑏𝑘, 𝑏𝑘⟩ to state ⟨𝑡𝑥, 𝑑𝑒⟩
or ⟨𝑡𝑥, 𝑏𝑘⟩ would depend on deferral probability of 𝑌 with

respect to 𝑋 . To see this, assume that 𝑌 carrier senses 𝑋
perfectly. Then when 𝑋 moves from 𝑏𝑘 to 𝑡𝑥 state (i.e., starts

transmitting as soon as the backoff interval is over), 𝑌 must

also move from 𝑏𝑘 to 𝑑𝑒 as it defers to 𝑋's transmission by

freezing its backoff countdown timer. If instead 𝑌 never carrier

senses 𝑋 , it will remain in the 𝑏𝑘 state.

5Note that this Markov chain assumes only two nodes 𝑋 and 𝑌 interact.
Thus, for example, the state ⟨𝑑𝑒, 𝑑𝑒⟩ is not possible as both nodes cannot
defer at the same time.

Note again that this combined Markov chain is speci�ed for

a node pair only, as we are interested in pair-wise interference.

This chain can be repeated for all pairs to determine the

sender-side interference between all node pairs. When con-

sidering a particular pair, we �lter out the packets of just the

two senders for analysis, and ignore the other packets. This

may cause an active node to appear idle for certain periods

of time if the node defers for a third node's transmission.

While this may result in our method missing out on an

opportunity to interpret the interaction between the particular

pair as interfering or non-interfering, it is important to note

that this does not create any incorrect interpretation. Recent

studies [13] show that the number of instances of 3 or more

nodes simultaneously being active is much less than that of

only a pair of nodes being active. Thus, we should get enough

instances of just a pair of nodes being active in a long trace.

An alternate but computationally expensive method could try

to identify portions of the trace where only the senders in a

node pair being considered are active.

B. Observation Symbols

As we do not know the interference relation yet, the

state transition probabilities of the combined Markov chain

is unknown. Also, the states of this Markov chain are not

directly visible in the packet trace. We thus need to map each

state in this Markov chain to an observation symbol obtained

from the trace that can be used to learn the state transition

probabilities. There are four possible observation symbols in

the trace depending on whether 𝑋 or 𝑌 transmits:

𝑖: neither 𝑋 , nor 𝑌 transmitting.

𝑥: 𝑋 transmitting.

𝑦: 𝑌 transmitting.

𝑥𝑦: both 𝑋 and 𝑌 transmitting.

Each state in the Markov chain can be mapped to one of

the four symbols above. This mapping is not unique as more

than one state can map to the same observation symbol. For

example, both states ⟨𝑖𝑑, 𝑖𝑑⟩ and ⟨𝑏𝑘, 𝑏𝑘⟩ map to the symbol

𝑖. Similarly, both ⟨𝑏𝑘, 𝑡𝑥⟩ and ⟨𝑑𝑒, 𝑡𝑥⟩ map to symbol 𝑦. The
dif�culty here is that backoff cannot be distinguished from

defer or idle periods. This ambiguity can be reduced by using a

heuristic that exploits the time duration of various observation

symbols. This is elaborated below.

A backoff interval in 802.11 comes from a random process

and can last for integral number of slots (20 𝜇s in 802.11b).

Also, the maximum backoff interval is bounded (31 slots in the

�rst backoff stage6). While not impossible, it is very unlikely

that a defer or idle period will be within this bounded interval

and also last for exactly an integral number of slots.

This strategy to distinguish between backoff and idle/defer

periods requires highly accurate clocks (within few microsec-

onds). Without a specialized technique, the experimentally

6As a simpli�cation, we develop the model only for the �rst backoff stage
here. This implicitly assumes that retransmissions are rare (which has been
true in our experiments). The general approach can be extended to handle
multiple backoff stages by observing the number of retransmissions in the
trace).
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observed accuracy is not suf�cient. We thus use a weaker

heuristic in this work that does not require strong clock

accuracy. We assume that defer/idle periods are always longer

than 31 slots and backoffs are always equal or shorter. This,

however, introduces errors when airtime of an 802.11 frame is

less than 31 slots (620 𝜇s for 802.11b7). This also introduces

errors for very small idle times. With these sources of error,

the results in the next section provide only a lower bound on

the accuracy obtainable by the base technique. In our future

work, we will explore possibilities of using accurate timing

information to remove these inaccuracies.

With the above weaker heuristic, each observation symbol

can be of two types. The symbol 𝑖 can be either 𝑖𝑠 or 𝑖𝑙,
corresponding to short (≤ 31 slots) and long (> 31 slots)

respectively. According to the heuristic, 𝑖𝑠 is most likely output

by ⟨𝑏𝑘, 𝑏𝑘⟩ state, while 𝑖𝑙 is most likely output by ⟨𝑖𝑑, 𝑖𝑑⟩
state, for example. Similarly, the symbols 𝑥 and 𝑦 can be

either 𝑥𝑠 and 𝑥𝑙, and 𝑦𝑠 and 𝑦𝑙, respectively. Figure 3 shows

the observation symbols for each state.

With the help of the heuristic, we can distinguish between

backoff and idle/defer periods. But we still cannot differentiate

between idle and defer. For this reason, both the states ⟨𝑡𝑥, 𝑖𝑑⟩
and ⟨𝑡𝑥, 𝑑𝑒⟩ map to the same observation symbol 𝑥𝑙. This

implies that the transition from state ⟨𝑡𝑥, 𝑖𝑑⟩ to state ⟨𝑡𝑥, 𝑑𝑒⟩
will not be visible in the merged trace as there is no change in

the observation symbol. Thus any transition from state ⟨𝑡𝑥, 𝑖𝑑⟩
to any other state, for example, state ⟨𝑖𝑑, 𝑏𝑘⟩ via state ⟨𝑡𝑥, 𝑑𝑒⟩
will not be correctly interpreted. To overcome this problem,

we force transition links from state ⟨𝑡𝑥, 𝑖𝑑⟩ to states which

have incoming transition from state ⟨𝑡𝑥, 𝑑𝑒⟩. We refer to these

links as virtual links. Similarly, we also add virtual links from

state ⟨𝑖𝑑, 𝑡𝑥⟩ symmetrically. After we calculate the transition

probabilities of the model using the technique described in

the following subsection, we remove such virtual links and

distribute the probability on each such virtual link to the

corresponding sequence of valid transition links.

Each packet in the merged packet trace consists of a

timestamp for when the packet was received at the sniffer, the

id of the sender, size of the packet, and the rate at which it was

transmitted. This information is parsed to obtain the sequence

of above observation symbols from the trace. Based on this

sequence, we use the following technique to learn the state

transition probabilities of the Markov chain, that in turn will

provide the probability of interference between the senders.

C. Formal Speci�cation and Learning

We now provide the complete formal speci�cation of the

HMM using standard notations [16]. The HMM consists of

the following:

∙ Set 𝑆 of 𝑁 states, where 𝑁 = 11. 𝑆 is given by:

𝑆 = {𝑆𝑖} = {⟨𝑖𝑑, 𝑖𝑑⟩, ⟨𝑏𝑘, 𝑖𝑑⟩, ⟨𝑡𝑥, 𝑖𝑑⟩, ⟨𝑖𝑑, 𝑏𝑘⟩,
⟨𝑖𝑑, 𝑡𝑥⟩, ⟨𝑏𝑘, 𝑏𝑘⟩, ⟨𝑡𝑥, 𝑑𝑒⟩, ⟨𝑡𝑥, 𝑏𝑘⟩, ⟨𝑑𝑒, 𝑡𝑥⟩,
⟨𝑏𝑘, 𝑡𝑥⟩, ⟨𝑡𝑥, 𝑡𝑥⟩}.

7This means TCP packets with payload less than 400 bytes in 802.11b to
give the reader an idea.

∙ Set 𝑉 of 𝑀 observation symbols, where 𝑀 = 7. 𝑉 is

given by: 𝑉 = {𝑖𝑠, 𝑖𝑙, 𝑥𝑠, 𝑥𝑙, 𝑦𝑠, 𝑦𝑙, 𝑥𝑦}.
∙ Matrix 𝐴 of state transition probabilities, indicated by

𝐴 = [𝑎𝑖𝑗 ], where 𝑎𝑖𝑗 is the transition probability from

state 𝑆𝑖 to 𝑆𝑗 . This matrix is unknown at the outset and

will be determined. Note that some state transitions are

invalid and such 𝑎𝑖𝑗 is set to 0. Such transitions are absent
in Figure 3.

∙ Matrix 𝐵 of observation symbol probabilities, indicated

by 𝐵 = [𝑏𝑗𝑘], where 𝑏𝑗𝑘 is the probability that the

observation symbol is 𝑣𝑘 for state 𝑆𝑗 . In our case,

observation symbols are deterministic for each state. But

they are not unique. The mapping from states to symbols

are shown in a table within Figure 3.

∙ Vector 𝜋 of the initial state distribution, indicated by 𝜋 =
[𝜋𝑖], where 𝜋𝑖 is the probability of initial state being 𝑆𝑖.

We use 𝜋𝑖 = 1/𝑁 for all 𝑖, 1 ≤ 𝑖 ≤ 𝑁 .

The above de�nes the HMM, 𝜆 = (𝐴,𝐵, 𝜋). The packet trace
provides the observation sequence 𝑂 = 𝑂1, 𝑂2, ⋅ ⋅ ⋅𝑂𝑇 , where

each observation 𝑂𝑡 ∈ 𝑉 , and 𝑇 is the number of observations

in the sequence.

Given the above HMM 𝜆 and the observation sequence 𝑂,

we wish to learn the model parameters 𝜆 = (𝐴,𝐵, 𝜋) that

maximize 𝑃 (𝑂∣𝜆). This is a dif�cult problem, and there is no

optimal algorithm for it. We can, however, use the expectation-

modi�cation (EM) algorithm, which is an iterative method to

determine 𝜆, such that 𝑃 (𝑂∣𝜆) is locally maximized. The EM

algorithm alternates between an expectation (E) step, which

computes the model parameters most likely to produce the

observation, and a modi�cation (M) step, which computes the

maximum likelihood of model parameters across multiple E

steps [8]. We use the well-known Baum-Welch method, which

is a type of EM algorithm, based on the forward-backward

algorithm developed by Baum et al. [4]. The method ensures

that in every estimation step, we �nd a model which is more

likely to produce the observation. Thus, if we estimate the

parameters of the model 𝜆 to get 𝜆, then 𝑃 (𝑂∣𝜆) ≥ 𝑃 (𝑂∣𝜆).
While using the Baum-Welch method, we do not readjust

the parameters 𝐵 and 𝜋 in the model 𝜆. We initialize the state

transition probabilities such that equal probability is assigned

to all the outgoing valid transitions from each state. This

ensures that there is no initial bias in the model towards

interfering or non-interfering pair of nodes. This aids in

quick convergence of the method. We also need to use the

scaling technique in the procedure [12]. This is needed as we

deal with very long sequences of observations and continued

multiplications of certain small fractions create problems with

numeric accuracies.

D. Learning Deferral Probability

Transitions into any state with a defer component (i.e., states

such as ⟨𝑑𝑒, ∗⟩ and ⟨∗, 𝑑𝑒⟩) indicate interference. Thus, our

task is to evaluate the total probability of transition into such

states. Let us denote the set of these states as 𝐷, where

𝐷 ⊂ 𝑆. Similarly, let us denote by 𝑃 the set of states

{⟨𝑏𝑘, 𝑡𝑥⟩, ⟨𝑡𝑥, 𝑏𝑘⟩, ⟨𝑡𝑥, 𝑡𝑥⟩}. Transitions into any state of 𝑃
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indicate noninterference. If Π = [Π𝑖] is the stationary (steady

state) distribution of the states, then the deferral probability is

the summation of the steady state probabilities of states in 𝐷.

Thus, the deferral probability, 𝑝𝑑, is given by,∑
∀𝑖,𝑆𝑖∈𝐷 Π𝑖∑

∀𝑖,𝑆𝑖∈𝐷 Π𝑖 +
∑

∀𝑖,𝑆𝑖∈𝑃 Π𝑖
.

Once the transition probabilities 𝐴 = [𝑎𝑖𝑗 ] are learnt, Π = [Π𝑖]
can be determined as Π = lim𝑛→∞ 𝜋𝐴𝑛. The convergence is

guaranteed as 𝐴 is a stochastic matrix.

The above expression to compute deferral probability as-

sumes a symmetric link between a node pair. Links may

be asymmetric in reality, and the above expression can be

easily modi�ed to consider asymmetric deferral probabilities.

However, here we have assumed symmetric links for the sake

of simplicity.

V. EVALUATING SENDER-SIDE INTERFERENCE

In this section we describe a set of micro-benchmarking

experiments where two senders and broadcast traf�c are

used to speci�cally evaluate the sender-side interference us-

ing carefully controlled load. The degree of interference is

varied by repositioning the senders. Before we go forward,

we describe two other possible methods to infer sender-side

interference. They will be used as comparison points in our

micro-benchmarking experiments.

A. Comparison Points

1) Pro�le based method (PROFILE): This technique is

speci�cally based on [18], [11]. This involves understanding

the relation between the received signal strength (RSS) and the

probability of deferral. This is done by using a pair of nodes

to collect a large number of measurements for the above two

variables and then creating a pro�le for the speci�c interface

card used. This needs to be repeated for all different cards used

in a network. Once the pro�le for a speci�c card is known, the

probability of deferral between two nodes can be obtained by

measuring the average RSS values between them and doing

a lookup on the pro�le. Note that this technique is based on

active measurements and is thus expected to be quite accurate.

We use this technique as a benchmark.

2) Moving window based method (WINDOW(𝑡)): This is

a simple heuristically based approach that may not perform

well without extensive parameter tuning. See the discussions

in Section III-B in this regard. This technique involves using a

moving time window of size 𝑡 seconds to scan the combined

packet trace, such that we consider only the packets in the

window at a time. For each window position, we try to

infer if the nodes interfere or they do not, by analyzing their

throughputs during the window (see below). Finally, we use

the ratio of the number of window instances where the nodes

interfere and the number of window instances where they do

not to obtain the probability of deferral.

Speci�cally, we use the following approach.
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Fig. 4. Combined performance results for 11 chosen scenarios for two node
experiments.

∙ Only consider windows that have packets from both

nodes. (We do not want to consider windows that have

mostly one node transmitting and the other silent.)

∙ Determine the saturation throughput 𝑇𝑠𝑎𝑡. This is tricky

and will depend on the transport protocol and packet sizes

used. For example, if saturated UDP traf�c is used, it is

roughly 0.82 (normalized) if the header overheads are

discounted for a packet size of 1KB with 2 nodes. See,

for example, [5]. For TCP it is smaller and is usually

around 0.6.

∙ The aggregated throughput 𝑇𝑜𝑏𝑠 of the two nodes in the

window being considered is calculated. If 𝑇𝑜𝑏𝑠 > 𝑇𝑠𝑎𝑡 −
𝛿1, then the window is considered saturated, otherwise

the window is considered unsaturated.

∙ A saturated time window is marked non-interfering if

𝑇𝑜𝑏𝑠 > 𝑇𝑠𝑎𝑡 + 𝛿2.
∙ The parameters 𝛿1 and 𝛿2 are needed to ride out mea-

surement noises and are tuned.

∙ Probability of deferral is the fraction of saturated time

windows that are marked interfering.
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B. Micro-benchmarking with Two Nodes

We use a two-sender, two-sniffer scenario here. Each sniffer

is co-located with a sender to guarantee that all frames

are received. In fact, we use just two machines for these

experiments, each with two 802.11 radios, where one radio

acts as the sender, the other acts as the sniffer.8

For the experiments, all the four radios are put on the same

channel. The choice of channel is immaterial. The sender radio

is con�gured in `ad hoc' mode. All experiments are done for

802.11b and by setting the PHY-layer data rate to 11Mbps.

We keep one machine �xed at one location, and relocate the

other to various locations in the building to create a range of

interference scenarios where the two senders either interfere

or do not interfere, or interfere partially. For each scenario,

we perform the following measurements. First, we measure

the actual probability of deferral between the nodes using

the method described in [14]. We let each sender broadcast

1400 byte UDP packets as fast as it can in isolation for a

minute, and measure their throughputs in isolation. We then let

them broadcast together as fast as they can, and measure their

throughputs again. The ratio of the sum of throughputs when

the senders broadcast together to the sum of throughputs when

the senders broadcast in isolation is de�ned as 𝐵𝐼𝑅, or the

broadcast interference ratio [14]. Note 0.5 ≤ 𝐵𝐼𝑅 ≤ 1. The
`measured' probability of deferral is estimated as 1/𝐵𝐼𝑅−1.
We also measure the RSS values at each sender when the

other sender broadcasts in isolation. This is again done for

each scenario. This is used to estimate the probability of

deferral using the 𝑃𝑅𝑂𝐹𝐼𝐿𝐸 method described above. The

interface card pro�les have been independently done using a

method similar to [11].

Now, we do a series of experiments to capture live network

traf�c so that 𝐻𝑀𝑀 and 𝑊𝐼𝑁𝐷𝑂𝑊 (𝑡) methods can be

applied. We generate traf�c in the following fashion for

each scenario. The senders broadcast 1400 byte UDP packets

simultaneously for one minute. The offered load is varied from

0.1 Mbps to 6 Mbps in 10 steps. The inter-packet times are

chosen from a Poisson distribution. The PHY-layer bit rate

is chosen to be 11 Mbps; thus, 6 Mbps for each node means

saturated load. Meanwhile, each sniffer captures all the packets

it hears in that duration. The packet trace from each sniffer

is merged using the techniques described earlier, and this

combined trace is used to estimate the probability of deferral

using the 𝐻𝑀𝑀 and the 𝑊𝐼𝑁𝐷𝑂𝑊 (𝑡) methods. The later

is repeated for three different window sizes (𝑡= 0.01s, 0.1s,

1s).

We make such measurements for 11 different locations of

the laptop, creating 11 different scenarios. The distribution

of the measured probability of deferral at different locations

is presented in Figure 4(a). For each scenario, 10 differ-

ent values of offered load are used between 0.1 Mbps and

6 Mbps, thus creating 110 measurements for 𝐻𝑀𝑀 and

8Note that two radios are used just for convenience and to ensure that all
packets are captured so that a baseline performance is established. In practice,
the sniffer will be a physically separate device. All the cards are based on
Atheros chipsets and the popular MadWiFi driver is used.
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Fig. 5. Estimated and measured probabilities of deferral for the 16 test cases
with the departmental WLAN.

the 𝑊𝐼𝑁𝐷𝑂𝑊 (𝑡) methods, and 11 measurements (one for

each scenario only) for the 𝑃𝑅𝑂𝐹𝐼𝐿𝐸 method. The distri-

bution (CDF) of errors (`estimated' � `measured' probability

of deferral) is plotted for all three methods in Figure 4(b).

Note that the 𝐻𝑀𝑀 approach is quite competitive with the

𝑃𝑅𝑂𝐹𝐼𝐿𝐸 method. In fact, it is slightly better overall for the

particular distribution of deferral probabilities. The reason for

this is that the 𝑃𝑅𝑂𝐹𝐼𝐿𝐸 method uses pro�les for interface

card models, rather than from the speci�c cards used in the

experiments [11], even though it uses RSS measurements

on the actual network with the actual cards used. Variations

between individual cards can lead to modeling errors.

The root mean square error (RMSE) values are 0.165 and

0.208 for 𝐻𝑀𝑀 and 𝑃𝑅𝑂𝐹𝐼𝐿𝐸, respectively. The RMSE

values for 𝑊𝐼𝑁𝐷𝑂𝑊 (𝑡) methods is 0.385, 0.408, and 0.402

for 𝑡 = 0.01s, 0.1s, and 1s respectively. We have noted

before, however, that the 𝑃𝑅𝑂𝐹𝐼𝐿𝐸 method is impractical

for analyzing live network traf�c and it also requires access

to the network nodes.

Overall, 𝐻𝑀𝑀 is quite competitive with 𝑃𝑅𝑂𝐹𝐼𝐿𝐸,

but requires only passive measurements. The experience with

the window-based method is quite variable. It is also quite

sensitive to choice of window size.

VI. COMPLETE EVALUATION ON WLAN

Here, we provide a complete evaluation � both sender and

receiver sides. These experiments are done on a departmental

WLAN with 7 APs. The WLAN is spread over two �oors of

a building. 7 laptops are used as clients. Each client fetches

large �le via HTTP download using unicast link for about

20 mins. This simulates real network traf�c that are sniffed

using 9 sniffers (Soekris [22] single board computers with

802.11 miniPCI cards with Atheros chipset and with external

USB �ash memory to store packet traces). The sniffers are

deployed based on convenience, i.e., near a power outlet and

in the rooms that we have regular access to etc. But an attempt

was made to keep them as close to the APs as possible.

16 client laptop pairs are considered for evaluation. All of

these pairs associate with two different APs. Unlike the micro-

benchmarking experiments, the default auto-rate control with

802.11b is used. Also, the 802.11 frames are now unicast with

ACK. RTS/CTS are not used. For each pair, the probability
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of interference between the pair of download links (AP to

client) is `estimated' using equation 1. First the probability of

deferral (𝑝𝑑) is estimated using the HMM-based method using

the merged sniffed traf�c traces from all sniffers. Second,

the probability of collisions (𝑝𝑐) are estimated by observing

the retransmissions for overlapped packets as described in

Section III-C. However, in all cases retransmissions were rare,

typically less than 1% of frames were retransmitted. This is

consistent with prior experimental observations [13]. Thus,

𝑝𝑐 could be safely ignored with 𝑝𝑑 alone determining the

probability of interference.

For validation, 𝑝𝑑 is `measured' via the BIR method de-

scribed in the previous subsection. For these measurements,

simultaneous saturated UDP traf�cs on the downlinks are used

for about 2 mins. The validation results are shown in Figure 5

as a scatterplot. Note the high degree of predictability of the

estimation in this real-life experiment. The straight line is the

least square �t with the condition that that the line passes

through 0. Note that it is very close to the 𝑦 = 𝑥 line. The

𝑅2 value for this line is 0.88 showing a good �t.

A careful reader will notice a slight bias at the low end

of the deferral probabilities. The HMM method consistently

overestimates deferral probability, when the probability is very

small. We have also observed this in our micro-benchmarking

though it does not show up in the CDF plots. The reason for

this is the heuristic we used in our modeling (Section IV-B)

that defer/idle periods are always assumed longer than 31 slots.

When there is little interference, often idle periods could be

shorter than backoffs. If they are misclassi�ed as backoffs,

the possibility of misclassifying some idle states as defer

increases. As discussed in Section IV-B, a stronger heuristic

using more accurate clocks could address this issue.

VII. CONCLUSIONS AND FUTURE WORK

We have investigated a novel machine learning-based ap-

proach to estimate interference in a 802.11 network. The

technique uses a merged packet trace collected via distributed

snif�ng. It then recreates the MAC layer interactions on the

sender-side between network nodes via a machine learning

approach using the Hidden Markov Model. This coupled

with an estimation of collision probability on the receiver-

side is helpful in inferring the probability of interference in

the network links. The power of this technique is that it is

purely passive and does not require any access to the network

nodes. It can serve as a toolbox to understand the interference

properties of an arbitrary 802.11 network and can be used as

a third-party solution.

The evaluations demonstrate the power and utility of the

technique. First, we have shown that the technique is sig-

ni�cantly more accurate than heuristics and competitive with

known methods that use pro�ling and active measurements

directly on network nodes. Second, we have validated the

technique using real life experiments with HTTP downloads

in a live WLAN with 7 APs.

While the proposed technique is able to estimate non-binary

interference relations, one shortcoming at this time is that

it can infer only pairwise interference and not aggregated

interference from a set of nodes. However, this is more of a

limitation of our current study and not of the basic approach.

The Markov model can be extended from node pairs to triplets,

quadruplets, and so on, and stop when no new information can

be learnt. In each step, the number of states increases making

the learning process computationally more and more intensive.

Our future work will extend our approach to such modeling.
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Snoeren, S. Savage, and G. M. Voelker. Automating cross-layer
diagnosis of enterprise wireless networks. Proc. ACM SIGCOMM, 2007.

[7] Y.-C. Cheng, J. Bellardo, P. Benkö, A. C. Snoeren, G. M. Voelker, and
S. Savage. Jigsaw: solving the puzzle of enterprise 802.11 analysis.
Proc. ACM SIGCOMM, 2006.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal
Statistical Society. Series B (Methodological), 39(1):1�38, 1977.

[9] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE
Transactions on Information Theory, 46(2):388�404, March 2000.

[10] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and E. M. Belding-
Royer. Understanding congestion in ieee 802.11b wireless networks. In
ACM IMC, 2005.

[11] A. Kashyap, S. Ganguly, and S. R. Das. A measurement-based approach
to modeling link capacity in 802.11-based wireless networks. In ACM
MobiCom, 2007.

[12] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An introduction to the
application of the theory of probabilistic functions of a markov process
to automatic speech recognition. Bell Syst. Tech. J., 62(4):1035�1074,
1983.

[13] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing the
MAC-level behavior of wireless networks in the wild. In Proc. ACM
SIGCOMM, 2006.

[14] J. Padhye, S. Agarwal, V. Padmanabhan, L. Qiu, A. Rao, and B. Zill.
Estimation of link interference in static multi-hop wireless networks. In
Proc. Internet Measurement Conference (IMC), 2005.

[15] L. Qiu, Y. Zhang, F. Wang, M. K. Han, and R. Mahajan. A general
model of wireless interference. In ACM MobiCom, 2007.

[16] L. R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Readings in speech recognition,
pages 267�296, 1990.

[17] S. Rayanchu, A. Mishra, D. Agrawal, S. Saha, and S. Banerjee.
Diagnosing wireless packet losses in 802.11: Separating collision from
weak signal. In Proc. IEEE Infocom, 2008.

[18] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Measurement-based models of delivery and interference in static wire-
less networks. In ACM SIGCOMM, 2006.

[19] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and J. Zahorjan.
Measurement-based characterization of 802.11 in a hotspot setting. In
ACM E-WIND, 2005.

[20] A. Schulman, D. Levin, and N. Spring. On the �delity of 802.11 packet
traces. In Proc. Passive and Active Measurememts (PAM), 2008.

[21] P. Serrano, M. Zink, and J. Kurose. Assessing the �delity of cots 802.11
sniffers. In Proc. IEEE Infocom Conference, 2009.

[22] Soekris Engineering. http://www.soekris.com.
[23] J. Yeo, M. Youssef, and A. Agrawala. A framework for wireless lan

monitoring and its applications. In Proc. ACM WiSe, 2004.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Secon 2010 proceedings.


