
201O IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

Detecting Selfish Carrier-Sense Behavior in WiFi Networks

by Passive Monitoring

Utpal Paul, Samir R. Das

Computer Science Department

Stony Brook University

Stony Brook, NY 11794-4400, USA

{upaul, samir }@cs.sunysb.edu

Abstract

With the advent of programmability in radios, it is be­

coming easier for wireless network nodes to cheat to obtain

an unfair share of the bandwidth. In this work we study

the widely used 802.11 protocol and present a solution to

detect selfish carrier-sensing behavior where a node raises

the CCA (clear channel assessment) threshold for carrier­

sensing, or simply does not sense carrier (possibly ran­

domly to avoid detection). Our approach is based on de­

tecting any asymmetry in carrier-sense behavior between

node pairs andfinding multiple such witnesses to raise con­

fidence. The approach is completely passive. It requires

deploying multiple sniffers across the network to capture

wireless traffic traces. These traces are then analyzed by

using a machine learning approach to infer carrier-sense

relationships between network nodes. Evaluations using a

real testbed as well as ns2 simulation studies demonstrate

excellent detection ability. The metric of selfishness used to

estimate selfish behavior matches closely with actual degree

of selfishness observed.

Keywords: 802.11 protocol, Hidden Markov Model, MAC
layer misbehavior.

1 Introduction

With the advent of programmable radios, different MAC
protocol parameters can be manipulated in various ways to
gain an unfair share of the available wireless bandwidth.
The case in point is widely used 802.11 networks. Several
radio interfaces and corresponding device drivers are avail­
able that let the user choose the clear channel assessment
(CCA) threshold and/or the backoff window size [17]. Re­
seting any one of these appropriately can deliver an unfair
bandwidth advantage to a selfish node [17] or even launch a
denial of service attack. For example, a higher CCA thresh-

978-1-4244-7501-8/10/$26.00 ©201O IEEE

Ritesh Maheshwari

Akamai Technologies

8 Cambridge Center

Cambridge, MA 02142, USA

rmaheshw@akamai .com

old can effectively disable carrier sensing. Thus, the selfish
node gains more transmission opportunities. This can also
cause collisions and thereby force the other transmitters in
the vicinity to backoff. While the selfish node itself may
also undergo a collision, the backoff period will be shorter
as it will not freeze its backoff counter with disabled carrier­
sensing. The authors in [17] demonstrate with extensive
experiments how a selfish node with higher CCA threshold
can gain a significant throughput benefit for different Trans­
port layer protocol. They also show that this kind of selfish
node is able to gain at least 5Mbps throughput gain from
its fair share [17]. Similarly, setting the backoff window
smaller provides an unfair advantage by backing off for a
shorter interval on average.

The situation is expected only to get worse with use of
more sophisticated radios (e.g., software radios), where any
part of the protocol can be easily manipulated or entirely
new protocols are used to gain bandwidth advantage. This
behooves the research community to develop techniques so
that such selfish behavior can be detected. While there are
several efforts to develop spectrum etiquette rules for use
by unlicensed devices [23] (for accessing fallow spectrum
such as DTV whitespace, e.g.), there are nearly not enough
effort to 'police' the spectrum to ensure that all radio de­
vices follow a prescribed protocol or rule.

A general solution of 'policing' problem is outside the
scope of this paper. We specifically focus on 802.11 net­
works, where available commodity hardware and software
easily allow for selfish behavior as mentioned before. Our
goal here is to detect such selfish behaviors via passive mon­
itoring. The approach is equally applicable to WLANs and
mesh networks, regardless of the topology or architecture
and can detect misbehavior on the part of any network node,
be it a client or access point (AP).

Looking at the literature, we find that there are several ro­
bust approaches that can detect manipulation of the backoff
mechanism (see, e.g., DOMINO [21] and the discussions in

11 DSN 2010: Paul et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

the related work section (Section 2». However, detecting
manipulation of the CCA threshold or completely disabling
carrier sensing is a much harder problem. In our knowl­
edge, the latter has been been addressed in only one recent
paper [l7] that provides a limited solution. Thus, in this
work we only address the carrier sensing issue.

Our general approach is as follows. A distributed set
of 'sniffers' collect traffic traces from the live network.
These sniffers do not transmit any packets making the
method completely unobtrusive. The traffic traces are then
merged [25, 16, 8] and analyzed using a machine learn­
ing technique to determine asymmetric carrier-sensing be­

havior between network nodes. This means that between
a given pair of nodes, one is sensing the other node's car­
rier, but not vice versa. Our general assumption is that

significant asymmetry in favor of a specific node that per­

sists long-term - when witnessed by multiple other nodes

- points to selfish behavior. This is because such asym­
metry may be very unusual due to normal wireless chan­
nel/interface effects. Our technique is general and can de­
tect selfish behavior on the part of multiple nodes in the
network. While the technique is off-line, it can run on the
background periodically to detect selfish behavior.

Since the approach is completely passive, it is dependent
on the sufficiency of the available network traffic for ana­
lyzing carrier-sense behavior. The challenge in this case is
to make accurate identification even (i) in presence of little
traffic, and traffic of unknown and arbitrary nature, or (ii)
for selfish node implementations that exhibit probabilistic
behaviors to avoid detection. There are indeed many other
issues related to the location of the sniffers and fidelity of
the merged traces that will impact the accuracy of the tech­
nique to a varying degree. However, these are independent
issues and have been discussed in related literature. We will
not have chance to address these issues in the current paper.

The rest of the paper is organized as follows. We will
discuss related work in Section II and the broad approach
in Section III. The details of the HMM-based formulation
will be covered in Section IV. Sections V has the experi­
mental and simulation-based evaluations. We will conclude
in Section VI.

2 Related Work

2.1 Detecting MAC-Layer Misbehavior in
802.11

Much of the work in literature only attempts to detect the
manipulation of the backoff behavior in 802.11. We sum­
marize them in the following.

Kyasanur and Vaidya [14] propose a mechanism where
the receiver directly specify the backoff value to the sender

978-1-4244-7501-8/10/$26.00 ©201O IEEE

to restrict the sender from being selfish. Cagalj et al. [5] de­
velop a distri buted protocol using a game theoretic approach
that leads the selfish nodes in the network to a Pareto­
optimal Nash equillibrium. Konoroski [13] also proposes a
scheme to detect the deviation from the ideal backoff mech­
anism. Radosavac [19] uses a technique based on Sequen­
tial Probability Ratio Test (SPRT) to identify the same kind
of misbehavior. All these above mentioned studies only deal
with the selfishness of a node doing only by backoff manip­
ulation. Raya et al. [21] propose and implement DOMINO
which can detect certain misbehaviors from greedy stations.
DOMINO can detect nodes that try to get larger share of
the bandwidth by sending 'scrambled frames,' or using a
smaller DIFS period before sending DATA packets, or us­
ing oversized NAV to have the medium idle for a longer pe­
riod of time. It also can detect backoff manipulation by the
greedy nodes. But DOMINO cannot detect any misbehav­
ior by a node regarding the carrier sensing, that is, it cannot
say whether a node is overhearing the carrier intentionally.

The above approaches detect mani pulation of the backoff
behavior. They can be complementary to our work. Detect­
ing manipulation of the carrier-sense behavior, however, is
a considerably harder problem. The reason for this is that it
is quite possible that a node may simply fail to detect ongo­
ing transmissions in the neighborhood due to normal wire­
less channel effects. For example, the received power may
simply be below the normal CCA threshold. Thus, identi­
fying abnormal behavior may be hard. In our knowledge,
only one paper [17] has addressed this issue. The authors
here make the assumption that the selfish node that has in­
creased its CCA threshold is unlikely to correctly recognize
low power transmissions from the AP as legitimate pack­
ets. Thus, by sending low power probes, the AP can po­
tentially detect such nodes. This technique makes a strong
assumption that packet reception with power lower than
CCA threshold is not possible, as such packets are treated
as noise. However, the attacker can avoid detection by sim­
ply changing the CCA threshold only when it transmits a
packet and reverting back to the normal threshold right af­
ter the transmission.! Also, depending on how the radio
transceiver is designed, packet reception success may not be
dependent of the CCA threshold. For example, in a software
radio implementation, the selfish node may simply turn off
carrier sensing all together or senses carrier probabilistically
to avoid detection. In addition the proposed technique is not
passive. It requires transmission of probes by the APs. This
may interfere with normal network traffic.

iThere may indeed be a latency issue that can slow down the selfish
node if such changes are frequent. For example, a register write to the
interface card must happen, or a call to the firmware using an API must be
made, etc. But we do not consider this to be an fundamental issue. With
the increasing efficiency of the radio hardware the latency may not be any
serious issue. Also, there is no reason for any latency if the MAC protocol
is implemented in a software radio platform.

12 DSN 2010: Paul et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

2.2 Use of Distributed Sniffers

Previous studies have also used distributed sniffers to
conduct a range of measurements over live networks to
learn various properties such as congestion [10], protocol
behavior in a hotspot setting [22, 8, 16], etc. The DAIR
system also uses such an approach for troubleshooting [1]

and security [2]. More details on similar related works ap­
pear in Section II-B of [11]. In this paper, we employ a
technique similar to [25] to merge individual traces into a
unified trace. However, unlike all the previous studies, our
focus is on identifying selfish carrier sense behavior in the
network using the merged trace.

3 Overall Approach

3.1 Problem Statement

If one observes live network traffic for long enough time,
many instances will arise where each node pair have pack­
ets to transmit at their interface queues at the same time.
In 802.11, if the packet already arrived at the queue when
the interface was busy (transmitting another packet), it first
undergoes a random backoff, freezing the backoff counter
whenever the carrier is sensed busy during the backoff in­
terval. At the end of the backoff the packet is transmitted. If
the packet arrived at an empty queue instead, it first senses
carrier. If the carrier is idle, the packet is transmitted imme­
diately. Otherwise, it waits until the carrier is sensed idle.
It then undergoes a random backoff before transmitting the
packet. We ignore discussing various inter-frame spacings
(DIFS, etc), as they have little impact on our study.

Freezing the backoff counter in the first case, or waiting
until the carrier is busy in second case is called deferral.

If we consider node pairs at a time, the deferral behavior
of each node in the pair being considered with respect to
the other can be inferred via a learning technique. We will
describe this technique in the next section.

Our general goal is to understand the asymmetry in the
deferral behavior. If Y defers for X's transmission and X
does not defer for Y's, then the link between X and Y is
asymmetric. While link asymmetry is possible in wireless
networks due to interface heterogeneity, it is simply un­
likely if a node X will demonstrate similar asymmetry with
many such Y's in the same direction. Our strategy is to flag
such nodes as potentially selfish, with degree of selfishness
indicated by extent of asymmetries exhibited and the num­
ber of such Y's (called witnesses).

For modeling convenience, we consider node pairs only
at a time. Due to the additive nature of the received power,
a given node may defer due to transmissions from a set of
other nodes. This is because a single transmission may not

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

generate enough power to cause deferral, however, multi­
ple such concurrent transmissions may still cause deferral
(physical interference). However, pairwise consideration
can still be quite powerful in practice. Also, in reality more
than two concurrent packet transmissions may actually be
rare even when there are many simultaneous active flows
in the network. For example, using a major trace collected
during the SIGCOMM 2004 conference, the authors in [16]

showed that only 0.45% of packets actually overlapped in
transmission. Thus, learning more elaborate higher order
relationships may not be very useful in identifying selfish
nodes. We do note that this simplification is notfundamen­

tal to our basic technique. The technique can be extended,

albeit with higher computational cost, to physical interfer­

ence.

Because of the inherent nature of wireless environment
(e .. g, fading) a probabilistic measure is suitable. Thus,
our goal is to estimate, via passive monitoring, the prob­
ability Pdef(X, Y) that node X defers to node Y's trans­
mission and do this estimation for all node pairs in ei­
ther direction. As mentioned before, significant asymme­
try in this probability indicates possible selfishness. Let
us assume that there is asymmetry in favor of X, i.e.,
Pdef (X, Y) < < Pdef (Y, X). If this is also witnessed by
more nodes such as Z, i.e., there exists several Z =f=. Y such
that Pdef(X, Z) < < Pdef(Z, X) we have more confidence
that X is behaving in a selfish manner.

3.2 Discussions

Our technique depends on the conjecture that if one ob­
serves the live network traffic for a long enough period,
enough of such instances will arise when simultaneous
transmissions are attempted in the network for each node
pair. Analysis of the packet trace at these instances can esti­
mate Pdef(X, Y) and Pdef(Y, X). Our goal is to (i) identify
such instances, and (ii) infer the deferral behaviors during
such instances. There are several challenges here. First,
creating a complete and accurate trace is difficult. But in­
complete trace may suffice in circumstances when it is sta­
tistically similar to the complete trace. Second, the self­
ish behavior becomes harder to detect if there is relatively
low load in the network. High load on the part of network
nodes makes discovering selfish behavior easier. This is true
both for the selfish and the 'witness' nodes. Regardless, it
is important to evaluate the performance of any detection
technique with varying load on both the selfish and other
network nodes. Third, heuristics are used to detect selfish
behavior. But straightforward heuristics may have limited
power. More details about these challenges appear in [11].

13 DSN 2010: Paul et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

3.3 Approach

Thus, to determine deferral behaviors among network
nodes, one needs a rigorous statistical modeling approach,
instead of relying on heuristic-based trace analysis. Our ba­
sic approach is as follows. We model sender node pairs
in the network (say, X, Y) via a Markov chain based on
the MAC layer operation of 802.11. The parameters of this
chain (essentially the state transition probabilities) are esti­
mated from the observed trace using an approach based on
the Hidden Markov Model (HMM) [18]. These parameters
in turn can estimate the deferral probabilities. We devote the
entire next section describing the HMM-based approach.

4 Hidden Markov Model For Interactions
Between Senders

A hidden Markov model (HMM) [18] consists of a sys­
tem modeled as a Markov chain with unknown parameters,
where the states of the Markov chain are not directly visi­
ble, but some observation symbols influenced by the states
are visible. There are standard methods [18, 9, 3] to learn
the unknown parameters (such as the state transition prob­
abilities of the Markov chain) using the observed sequence
of observation symbols. HMMs have been used in various
machine learning fields such as pattern, speech and hand­
writing recognition. We will be using the HMM approach
for inferring the deferral behavior between pairs of senders
in an 802.l1 network.

4.1 Markov Chain

The 802.l1 MAC protocol can be modeled as a Markov
chain for each sender [4, 11]. An 802.11 sender, say X,
resides in one of the following four states - 'idle,' 'back­
off,' 'defer,' and 'transmit.' These four states capture the
essence of the 802.11 MAC protocol. Figure 1 shows the
Markov chain modeling the 802.l1 MAC protocol for each
sender. We are intentionally ignoring interframe spacings
(e.g., DIFS) to keep the chain simple. Let us call the 4

states id, bk, de, and tx, respectively for brevity. The high
level description of this chain can be found in [11]. Here,
the state transition probabilities between bk and de depend
on the state of other nodes (Le., transmitting or not) in the
network, and the deferral probabilities between the sender
and these nodes. Similar argument applies for the transition
probability from id to de and tx, and transition probability
from tx to de and bk.

Since the transmissions from other nodes impact the
state transitions for a given node, a combined Markov
model needs to be considered to get a complete picture of
the network behavior. Here, each state is a tuple consisting
of states of individual nodes. Such a Markov chain would

978-1-4244-7501-8/101$26.00 ©2010 IEEE

cs=o. Q=1

Figure 1. State transition diagram for a single

sender. CS = 0 (CS=1) means that the carrier
is sensed idle (busy). Q = 0 (Q =1) means that

the interface packet queue is empty (non­

empty).

lead to a state space explosion with exponential number of
states, and would thus be intractable. Since our focus in
this work is on determining the pairwise deferral behav­
ior, we can restrict ourselves to the consideration of a com­
bined Markov chain for only a pair of nodes, say X and
Y. Each state in this Markov chain is a 2-tuple consisting
of the states of X and Y. For example, the state where X
transmits and Y defers would be (tx, de). There could be
16 possible states in theory. However, 5 of them are not le­
gal (e.g., (de, de), (de, bk) etc.2), leaving 11 possible states.
See Figure 2 for the combined Markov chain.

In this Markov chain, the state transition probability be­
tween certain states depends on deferral probabilities be­
tween X and Y. For example, from state (bk, bk) to state
(tx, de) or (tx, bk) would depend on deferral probability of
Y with respect to X. To see this, assume that Y carrier
senses X perfectly. Then when X moves from bk to tx
state (i .e., starts transmitting as soon as the backoff interval
is over), Y must also move from bk from de as it defers to
X's transmission by freezing its backoff countdown timer.
If instead Y never carrier senses X, it will remain in the bk
state.

Note again that this combined Markov chain is speci­
fied for a node pair only, as we are interested in pair-wise
relationships. This chain can be repeated for all pairs to de­
termine the deferral behavior between all node pairs. When
considering a particular pair, we filter out the packets of just
the two senders for analysis, and ignore the other packets.
This may cause an active node to appear idle for certain pe-

"Note that this Markov chain assumes only two nodes X and Y inter­
act. Thus, for example, the state (de, de) is not possible as both nodes
cannot defer at the same time.

14 DSN 2010: Paul et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

<id,id>
<bk,id> i,
<tx,id> x,
<id,bk>
<id,tx> Y,

<bk,bk>
<tx,de> x,
<tx,bk> X.
<de,tx> Y,
<bk,tx> Y,
<tx,tx> xv

Figure 2. Markov model of the combined MAC

Layer behavior of two nodes (sender side
only). Note that some arrows are bidirec­

tional.

riods of time if the node defers for a third node's transmis­
sion. While this may result in our method missing out on
an opportunity to interpret the interaction between the par­
ticular pair as interfering or non-interfering, it is important
to note that this does not create any incorrect interpretation.
Recent studies [16] show that the number of instances of
3 or more nodes simultaneously being active is much less
than that of only a pair of nodes being active. Thus, we
should get enough instances of just a pair of nodes being
active in a long trace. An alternate but computationally ex­
pensive method could try to identify portions of the trace
where only the senders in a node pair being considered are
active.

4.2 Observation Symbols

As we do not know the deferral behavior yet, the state
transition probabilities of the combined Markov chain are
unknown. Also, the states of this Markov chain are not
directly visible in the packet trace. We thus need to map
each state in this Markov chain to an observation symbol
obtained from the trace that can be used to learn the state
transition probabilities. There are four possible observation
symbols in the trace depending on whether X or Y trans­
mits:

i: neither X, nor Y transmitting.

x: X transmitting.

y: Y transmitting.

978-1-4244-7501-8/10/$26.00 ©201 0 IEEE

xy: both X and Y transmitting.

Each state in the Markov chain can be mapped to one of the
four symbols above. This mapping is not unique as more
than one state can map to the same observation symbol. For
example, both states (id, id) and (bk, bk) map to the symbol
i. Similarly, both (bk, tx) and (de, tx) map to symbol y.

The difficulty here is that backoff cannot be distinguished
from defer or idle periods. This ambiguity can be reduced
by using a heuristic that exploits the time duration of various
observation symbols. This is elaborated below.

A backoff interval in 802.11 comes from a random pro­
cess and can last for integral number of slots (20 f-Ls in
802.11 b). Also, the maximum backoff interval is bounded
(31 slots in the first backoff stage3). While not impossible,
it is very unlikely that a defer or idle period will be within
this bounded interval and also last for exactly an integral
number of slots.

This strategy to distinguish between backoff and
idle/defer periods requires highly accurate clocks (within
few microseconds). Without a specialized technique, the
experimentally observed accuracy is not sufficient. We thus
use a weaker heuristic in this work that does not require
strong clock accuracy. We assume that defer/idle periods
are always longer than 31 slots and backoffs are always
equal or shorter. This, however, introduces errors when air­
time of an 802.11 frame is less than 31 slots (620 f-Ls for
802.11 b4). This also introduces errors for very small idle
times. With these sources of error, the results in the next
section provide only a lower bound on the accuracy obtain­
able by the base technique. In our future work, we will
explore possibilities of using accurate timing information to
remove these inaccuracies. Moreover, the parameters of this
heuristic is not fundamental to our technique. We can use
this technique by changing the paramaters for 802.11a1g.

With the above weaker heuristic, each observation sym­
bol can be of two types. The symbol i can be either is or ii,
corresponding to short (-s; 31 slots) and long (> 31 slots)
respectively. According to the heuristic, is is most likely
output by (bk, bk) state, while il is most likely output by
(id, id) state, for example. Similarly, the symbols x and y

can be either Xs and Xl, and Ys and Yl, respectively. Figure 2
shows the observation symbols for each state.

With the help of the heuristic, we can distinguish be­
tween backoff and idle/defer periods. But we still cannot
differentiate between idle and defer. For this reason, both
the states (tx, id) and (tx, de) map to the same observa­
tion symbol Xl. This implies that the transition from state

3 As a simplification, we develop the model only for the first backoff
stage here. This implicitly assumes that retransmissions are rare (which
has been true in our experiments). The general approach can be extended to
handle multiple backoff stages by observing the number of retransmissions
in the trace).

4This means TCP packets with payload less than 400 bytes in 802.llb
to give the reader an idea.

15 DSN 2010: Paul et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

(tx, id) to state (tx, de) will not be visible in the merged
trace as there is no change in the observation symbol. Thus
any transition from state (tx, id) to any other state, for ex­
ample, state (id, bk) via state (tx, de) will not be correctly
interpreted. To overcome this problem, we force transition
links from state (tx, id) to states which have incoming tran­
sition from state (tx, de). We refer to these links as virtual
links. Similarly, we also add virtual links from state (id, tx)
symmetrically. After we calculate the transition probabili­
ties of the model using the technique described in the fol­
lowing subsection, we remove such virtual links and dis­
tribute the probability on each such virtual link to the corre­
sponding sequence of valid transition links.

Each packet in the merged packet trace consists of a
timestamp for when the packet was received at the sniffer,
the id of the sender, size of the packet, and the rate at which
it was transmitted. This information is parsed to obtain
the sequence of above observation symbols from the trace.
Based on this sequence, we use the following technique to
learn the state transition probabilities of the Markov chain,
that in turn will provide the probability of deferral between
the senders.

4.3 Formal Specification and Learning

We now provide the complete formal specification of the
HMM using standard notations [18]. The HMM consists of
the following:

• Set S of N states, where N = 11 . S is given by:
S = {Si} = { (id, id), (bk, id), (tx, id), (id, bk),
(id, tx), (bk, bk), (tx, de), (tx, bk), (de, tx),
(bk, tx), (tx, tx)}.

• Set V of M observation symbols, where M = 7. V is
given by: V = {is, iI, xs, Xl, Ys, Yl, xy}.

• Matrix A of state transition probabilities, indicated by
A = [aij l, where aij is the transition probability from
state Si to Sj. This matrix is unknown at the outset and
will be determined. Note that some state transitions
are invalid and such aij is set to o. Such transitions are
absent in Figure 2.

• Matrix B of observation symbol probabilities, indi­
cated by B = [bjkl, where bjk is the probability that
the observation symbol is Vk for state Sj. In our case,
observation symbols are deterministic for each state.
But they are not unique. The mapping from states to
symbols are shown in a table within Figure 2.

• Vector 7r of the initial state distribution, indicated by
7r = [7ril, where 7ri is the probability of initial state
being Si. We use 7ri = liN for all i, 1 :S i :S N.

978-1-4244-7501-8/10/$26.00 ©201O IEEE

The above defines the HMM, >. = (A, B, 7r) . The
packet trace provides the observation sequence 0 =

01, O2, ... OT, where each observation Ot E V, and T

is the number of observations in the sequence.
Given the above HMM >. and the observation sequence

0, we wish to learn the model parameters>' = (A, B, 7r)
that maximize P(OI>'). This is a difficult problem, and
there is no optimal algorithm for it. We can, however, use
the expectation-modification (EM) algorithm, which is an
iterative method to determine >., such that P(OI>') is lo­
cally maximized. The EM algorithm alternates between an
expectation (E) step, which computes the model parame­
ters most likely to produce the observation, and a modifica­
tion (M) step, which computes the maximum likelihood of
model parameters across multiple E steps [9]. We use the
well-known Baum-Welch method, which is a type of EM
algorithm, based on the forward-backward algorithm devel­
oped by Baum et al. [3]. The method ensures that in every
estimation step, we find a model which is more likely to pro­
duce the observation. Thus, if we estimate the parameters
of the model>. to get X, then P(OI>') � P(OIX).

While using the Baum-Welch method, we do not read­
just the parameters Band 7r in the model >.. We initialize
the state transition probabilities such that equal probability
is assigned to all the outgoing valid transitions from each
state. This ensures that there is no initial bias in the model
towards interfering or non-interfering pair of nodes. This
aids in quick convergence of the method. We also need
to use the scaling technique in the procedure [15]. This is
needed as we deal with very long sequences of observations
and continued multiplications of certain small fractions cre­
ate problems with numeric accuracies.

4.4 Detecting Asymmetric Behavior

Let II = [IIil be the stationary (steady state) distribution
of the states. Once the transition probabilities A = [aij 1 are
learnt, II = [IIil can be determined as II = limn-HXl 7r An.
The convergence is guaranteed as A is a stochastic matrix.
Now, asymmetric behavior can be detected the following
fashion.

If we represent IIi's as P(id, id), P(bk, id) etc, the prob­
ability that X has a packet to transmit and it defers while Y
transmits is given by

p (X Y) _

P(de, tx)
def , - P(de, tX) + P(bk, tX) + P(tx, tx)

The opposite probability (i.e., Y has a packet to transmit
and it defers while X transmits) is likewise

p (Y X) _

P(tx, de)
def , - P(tx, de) + P(tx, bk) + P(tx, tx)

The difference between Pdef(X, Y) and Pdef(Y, X) char­
acterizes asymmetry. Larger the difference, higher is the

16 DSN 2010: Paul et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

asymmetry. Due to the nature of our approach, the asym­
metry is tested between a node pair at a time. A positive
(negative) difference indicates that Y (X) is getting a band­
width advantage due to asymmetric carrier sensing. In our
evaluation, we have used the difference with a simple nor­
malization as the 'metric of asymmetry,' TJ(X, Y), except
when the two probabilities are both close to zero. Thus,
when both Pdef(X, Y) and Pdef(Y, X) < E (E was cho­
sen to 0.01 in the evaluations), the metric of asymmetry,
TJ(X, Y), is given by,

Pdef(Y, X) - Pdef(X, Y) ,

else it is given by,

Pdef(Y, X) - Pdef(X, Y)
max(Pdef(Y, X) , Pdef(X, y))'

Note that TJ(X, Y) = -TJ(Y, X).

4.5 Selecting Witnesses

In general, each network node X must be evaluated for
selfish behavior. By default, every other node Y acts as
witness and the above metric of asymmetry is evaluated for
the pair (X, Y). Thus, for each network node X, we take
the average of the metric of asymmetry TJ(X, Y) over all

the witnesses Y that provide a positive value. The negative
values are discounted as they will be accounted when Y is
evaluated with X as the witness. We call this average the
'selfishness metric'. We will evaluate this metric later in our
simulations.

However, if X and Y are not within carrier sense range
of each other (i.e., they never hear each other), Y cannot
serve as an effective witness. This is because P(de, tx) or
P(tx, de) would evaluate to zero. (In practice, due to mea­
surement noise, they evaluate to a very small value close to
zero.) Thus, the metric of asymmetry is zero. While this
is correct, this does present a problem. Assume that X is
indeed selfish in a 4 node network and witness Y I detects a
very large (i.e., TJ(X, Y I) is close to 1) metric of asymme­
try. However, witnesses Y 2 and Y 3 do not hear X at all (and
vice versa). They offer the metric (TJ(X, Y2) and TJ(X, Y 3))
as close to O. Here witness Y I is an effective witness while
witness Y 2 and Y 3 are ineffective witnesses. Without any
further information, if we aggregate these measures using
an average, we obtain a low confidence in X's selfishness
(about 0.3 in this example), even when we have one perfect
witness and the other witnesses are clearly ineffective. On
the other hand, relying on a single witness (e.g., Y I) that
points to a severe asymmetry may not be right as this may
simply be due to random wireless channel/interface effects
and not due to a systematic selfish behavior. Thus, this can
raise false alarms.

978-1-4244-7501-8/10/$26.00 ©201O IEEE

This problem cannot be addressed without some addi­
tional knowledge of the network regarding which node can
serve as a effective witness. Ideally, we would only rely
on witnesses that are within the carrier sense range from a
potential selfish node. The more such nodes, the better.

To address this issue, we use two simple heuristics
named as HI and H2. For heuristic HI, we assume that
the sniffer locations are known, as well as some bounds on
the carrier sense range (Re) and transmit range (RT) for
the network nodes. Then the sniffers that are separated by
at least Re + 2RT distance, must sniff nodes that cannot
hear each other. Thus in other words, for a node X sniffed
by a sniffer B x and another node Y sniffed by a sniffer By,
node Y will not be an effective witness of node X if Bx and
By are separated by at least Re + 2RT distance. This sim­
ple heuristic eliminates many nodes that should not serve
as witness to each other. Note that this may not remove all
ineffective witnesses, and if the bounds are incorrect, this
technique may even remove some effective witnesses. But
this technique is practical and easy to use, and at minimum
eliminates a large number of far-away witnesses that cannot
be effective by being outside the carrier-sense range.

For heuristic H2, we do not even need to assume any­
thing. In H2, Y is an effective witness of X, if they are
both sniffed by a common sniffer. H2 will surely remove
all the ineffective witnesses, and may also remove some ef­
fective witnesses.

For any given heuristic, for each network node X we
take the average of the metric of asymmetry TJ(X, Y) over
all the nodes Y that are selected as effective witnesses by
the heuristic and that provide a positive value for TJ. Then
we calculate the 'selfishness metric' by a simple averaging.

5 Evaluation

We have performed two sets of evaluations: (i) a set of
microbenchmarking experiments to understand the effec­
tiveness of the approach and (ii) a set of ns2 simulations
to study larger networks and complex selfish behaviors.

5.1 Experiments

The experiments essentially achieve careful micro­
benchmarking, where only two network links are used but
wireless channel quality, traffic load and selfish behaviors
are varied over a wide range. The transmitter of one link
is 'selfish'; the other transmitter is regular and acts as the
sole 'witness.' Each link is monitored by a 'sniffer' node
in close proximity of the transmitter. We also use a 'bea­
con' node, whose sole responsibility is to transmit 802.11
beacons at regular intervals to provide a common time base
needed for the trace merging. In a normal deployment these
beacons will be supplied by existing APs. We use 802.11a

17 DSN 2010: Paul et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

in preference to more widely used 802.11 big to reduce ex­

ternal interference. We have verified that no other 802.11a

transmissions exist in our testbed location in the channel we

used for our experiments (channel 52).

Each network node is essentially a single-board com­

puter (SBC), meant for embedded use, with an 802.11a/b/g

interface. We use Soekris 4826 boards [24] and Atheros

5213 chipset-based 802.11a/b/g mini-PCI cards manufac­

tured by Winstron connected to a 5 dBi rubber-duck an­

tenna. The boards run pebble Linux with rnadwifi device

driver for the 802.11 interface. The 802.11 interfaces in the

network nodes are set up in 'ad hoc' mode and the sniffer

nodes in 'monitor' mode. The lowest possible PHY layer

rate (6 Mbps) and a large packet size (1470 bytes) is cho­

sen for the experiments. This is because, at higher rates or

smaller packets, the sniffers cannot capture all packets in

our low-cost embedded hardware, likely due to inefficien­

cies in interrupt processing. Tcpdump is used for packet

capture in the sniffers. The radiotap headers in the captured

packets are used to record SNR.

The selfish transmitter achieves selfishness by not sens­

ing carrier before transmitting. To achieve this we have

used the antenna switching technique described in [6]. The

802.11 interface uses two antenna connectors for diver­

sity. We have only one antenna connected to one con­

nector, keeping the other connector unconnected. Using

driver-level commands, any one of the connectors can be

selected as the receiving/transmit antenna. Selecting the un­

connected antenna as the receiving antenna effectively dis­

ables carrier sense.s The impact of the selfish behavior can

be varied by simply varying the distance between the self­

ish and witness nodes. A close distance means the witness

node is impacted significantly due the selfish behavior as

the RSS at the witness node is high. A large distance means

that RSS is low and often the witness node cannot hear the

selfish node due to channel fading, and thus the selfishness

causes little impact.

The benchmarking experiments are performed by in­

creasing the distance between the two transmitters (selfish

and witness) from a very small value at steps of 3 ft in 28

discrete steps. For each position, (i) the average SNR from

the selfish to the witness transmitter is measured, and (ii)

iperf is used to transmit UDP packets at different offered

loads on their respective links for 60 sec. We use offered

loads of 6 and 4 Mbps for iperf, denoting high and low

loads, respectively. We experiment with both loads on the

selfish node, while the witness node has only high load.

Figure 3 plots the estimated metric of asymmetry T) for

the <selfish, witness> node pair for each of the experi-

SNote that selfishness can also be achieved by resetting the CCA thresh­
old as in [17]. However, in our hardware we have found that the antenna
switching technique is more foolproof than using an increased CCA thresh­
old.

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

0.9
+

0.8 X
+ +

0.7
'"
a; 0.6 E
i!>

« 0.5 15
.!< 0.4 � ::;;
u 0.3
* E 0.2 + + + �

� �
w

X 0.1
X x�

·0.1
15 20 25 30 35 40 45

SNR (dB)

Figure 3. Experimental results with varying
load on the selfish node.

ments. The plots are color-coded based on the load. The

asymmetry is clearly higher with higher SNR. Note that

with lower load on the selfish node the asymmetry tends

to be somewhat lower as expected. Also, note significantly

lower asymmetry when the SNR is very high (i.e., nodes

are very close). This is an artifact of our experimental tech­

nique. The selfish node starts picking up some signal at

close ranges even when the antenna is disconnected, and

thus it stops being selfish. So, much lower asymmetry is

detected for very high SNRs.

Note that the above two node micro-benchmarking is

sufficient to derive an insight into what would happen in

a multiple node network. Essentially, nodes still need to be

evaluated in a pair wise fashion. For each potential self­

ish node, we need to evaluate the metric of asymmetry with

each possible witness node independently. Note again, (as

discussed in Section 3), we are currently considering pair­

wise interface only. But several other issues remain to be

evaluated - (i) how to effectively combine the metric of

asymmetry, (ii) how suitable are the witness nodes. We will

explore these issues via a packet level simulation using the

ns2 simulator.

5.2 Simulations

Ns2 simulations let us implement various degrees of self­

ishness, where the selfish node senses carrier with only a

certain probability. We use the term degree of selfishness

(Ps) to indicate that the selfish node senses carrier with

probability equal to 1 - Ps. Ns2 simulations also make it

easier to investigate larger networks, where there are many

nodes, possibly with more than one selfish node with vary­

ing traffic and degrees of selfishness.

In our simulated scenario, there are 40 network nodes

distributed randomly in a square region. We chose a de-

18 DSN 2010: Paul et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1 3 5 7 9 11 13 1517192123 2527293133353739
Node Ids

.0.0

. 0 .2
00.4
110.6
.0.8
01.0

Figure 4. Simulation results for a 40 node net­

work. Node 2 is the only selfish node. The
estimated selfishness metric using heuristic

H2 is shown for each node for each of the 6
sets of simulations that are run with different

degree of selfishness of node 2.

ployment typical of dense WiFi client distribution in in­

door office environments, assuming that there is one node

in 300 sq. feet on average. The default ns2 wireless channel

model is extended to include shadowing [20]. This intro­

duces randomness in the transmission range of a node in­

stead of making it a perfect disk. Shadowing parameters are

taken from [12] where a set of measurements was done to

model such parameters in an indoor environment. A set of

feasible network links are chosen randomly and I-hop UDP

flows are generated with randomly chosen loads (between

0.5-1 Mbps). Each flow is active (and then inactive) only

for a random interval of time. Both intervals are chosen

from an exponential distribution with a mean of 5 sec. Note

that the exact traffic parameters are not important for our

work. All that is important is that enough traffic is recorded

so that for each pair of nodes that are potentially within the

carrier sense range there are concurrent packet transmis­

sion attempts. This ensures that any possible selfish node

will find enough witnesses.

We deploy a set of 10 sniffers at random locations.

Among the 40 network nodes, 1, 2 or 3 nodes are selfish.

The degree of selfishness is varied. For each pair of nodes,

we evaluate the metric of asymmetry by using the procedure

in Section 4. For each network node X, we measure the

selfishness metric in three ways as discussed in Section 4.5:

(i) using all possible witness nodes, (ii) using witness nodes

based on heuristic HI, and (iii) based on heuristic H2.

Figure 4 plots the selfishness metric of each node in the

scenario with one selfish node with varying degree of self­

ishness where the witness nodes are selected using heuristic

H2. Note that the metric has a very visible peak only for the

selfish node. The values of metric for the selfish nodes are

roughly similar to the degree of selfishness.

Because of space limitation we do not present the similar

978-1-4244-7501-8/101$26.00 ©2010 IEEE

1 1 el ish ode(0 He IstlC)
2 Sel/ish Nodes(No Heuristic) ••• -fI •••
3 Sel/ish Nodes(No Heuristic)•....

1 Selfish Node(H 1) iii

0.8 2 Selfish Nodes(H 1) •.•.• -_.-
3 Selfish Nodes(H 1)

1 Selfish Node(H2) .. ··It
I/) 2 Selfish Nodes(H2)

-
..

j 0.6
3 Selfish Nodes(H2)•.

-0
:l,
11
II) 0.4

�
0.2

0
0 l
.3
-�.0�2��.0.f!:, ::m�=-----:0-:-:'

-
---::0'::-.2

-
--;:0.3

Error

Figure 5. CDF of 'estimation error' for the
selfishness metric. Three different scenarios

are presented where number of selfish nodes

are varied (1, 2 or 3) and witness nodes are
identified in three different ways.

'"
1.0 '" Q) <:: .s:::

'" 0.8 '"
Q; (j)

0.6
*�
r:' 0.4
w

0.2 Q) 0>
l!! Q) 0.0
� 2

No. of Selfish Nodes
3

• No Heuristic
• Heuristic H1

Heuristic H2

Figure 6. Simulation results for the sparse
network.

plots for the scenarios with 2 and 3 selfish nodes using dif­

ferent heuristics. We instead show the overall statistics that

summarizes how good our detection is. For each scenario

and for each type of witness node identification technique,

we evaluate for each node the 'estimation error' as the al­

gebraic difference between the computed selfishness metric

and the actual degree of selfishness of that node. All nodes

(selfish and regular) are included. The estimation error is

plotted as a CDF in Figure 5. Nine plots are shown for three

techniques used to identify the witness nodes and for three

different numbers of selfish nodes. The CDF shows that the

estimation error is very small in general and heuristic H2

performs somewhat better than the other two techniques in

general.

In this scenario, the heuristics do not perform much bet­

ter than the no heuristic case, because the no heuristic case

itself performs very well. The reason for this is the high

density of the network. To demonstrate the power of the

heuristics we consider a sparser network with 40 nodes dis­

tributed randomly in squared region with one node in 1500

19 DSN 2010: Paul et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

sq. feet on average. Different scenarios are created by vary­

ing the number of selfish nodes (1, 2 or 3) with degree of

selfishness = 1. Because of the sparsity of the network we

now have to deploy more sniffers to capture all network

traffic. So, this time we deploy 40 sniffers randomly as

before. Figure 6 shows the average estimated selfishness

metric measured in three ways as before only for the selfish

node(s). Note that as expected (i) estimation becomes bet­

ter when we identify witness nodes using the heuristics in

compared to using all the nodes as witness; (ii) H2 is gen­

erally a better heuristic, and (iii) estimation becomes worse

with a larger number of selfish nodes.

6 Conclusions

We have investigated a novel machine learning-based ap­

proach to detect selfish carrier-sense behavior in an 802.11

network. The technique uses a merged packet trace col­

lected via distributed sniffing. It then recreates the MAC

layer interactions on the sender-side between network nodes

via a machine learning approach using the Hidden Markov

Model. The power of this technique is that it is purely pas­

sive and does not require any access to the network nodes.

It can be used as a third-party solution for detecting MAC­

layer misbehavior in 802.11 networks. Though it works of­

fline, but it can be used periodically every few minutes (for

example) to detect selfish nodes. Evaluations show excel­

lent detection ability in presence of varying load and degree

of selfishness.

There are indeed some limitations of the technique as

presented here. So far, we only assumed pairwise inter­

ference and ignored physical interference (see discussions

in Section 3.1) arguing that the improvement in accuracy

will be relatively minor. Also, 802.11 retransmissions were

ignored in the modeling to reduce complexity. These are

not fundamental limitations and can be accommodated with

higher computational cost, but are likely unnecessary. So

long as enough of the common baseline case that we mod­

eled indeed show up in the traffic trace, we will have a very

good estimation accuracy. Our future work will include

more evaluations to demonstrate this aspect. We will also

study the impact of inaccuracy in trace gathering. Finally,

the proposed technique along with an established technique

for selfish backoff manipulation [19, 21] can form a com­

plete solution to detect selfish behaviors in 802.11 networks.

References

[l] P. Bahl, et al. DAIR: A framework for troubleshooting enterprise
wireless networks using desktop infrastructure. In ACM HotNets-IV,

2005.

[2] P. Bahl, et al' Enhancing the security of corporate Wi-Fi networks
using DAIR. In ACM MobiSys, 2006.

978-1-4244-7501-8/lO/$26.00 ©2010 IEEE

[3] L. E. Baum and 1. A. Eagon. An inequality with applications to
statistical estimation for probabilistic functions of markov processes
and to a model for ecology. Bull. Arner. Math. Soc., 73:360-363,
1967.

[4] G. Bianchi. Performance analysis of the IEEE 802.11 Distributed
Coordination Function. IEEEJSAe, 18(3):535-547, 2000.

[5] M. Cagalj, S. Ganeriwal, I. Aad, and 1.-P. Hubaux. On selfish behav­
ior in csmalca networks. In Proc. IEEE Infocorn Conference, 2005.

[6] K. Chebrolu, B. Raman, and S. Sen. Long-distance 802.11b links:
Performance measurements and experience. In ACM MobiCorn,

pages 74--85, 2006.

[7] Y.-C. Cheng, M. Afanasyev, P. Verkaik, P. Benko, 1. Chiang, A. C.
Snoeren, S. Savage, and G. M. Voelker. Automating cross-layer diag­
nosis of enterprise wireless networks. Proc. ACM SIGCOMM, 2007.

[8] y.-c. Cheng, 1. Bellardo, P. Benko, A. C. Snoeren, G. M. Voelker,
and S. Savage. ligsaw: solving the puzzle of enterprise 802.11 anal­
ysis. Proc. ACM SIGCOMM, 2006.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal

Statistical Society. Series B (Methodological), 39(1):1-38, 1977.

[l0] A. P. lardosh, K. N. Ramachandran, K. C. Almeroth, and E. M.
Belding-Royer. Understanding congestion in IEEE 802.11 b wireless
networks. In ACM IMe, 2005.

[l1] A. Kashyap, U. Paul, and S. R. Das. Deconstructing Interference
Relations in WiFi Networks. In Proc. IEEE SECON, 2010.

[l2] A. Kashyap, S. R. Das, and S. Ganguly. Measurement-based ap­
proaches for accurate simulation of 802.11-based wireless networks.
In Proc. ACM MSWIM, 2008.

[13] 1. Konorski. Multiple access in ad hoc wireless lans with noncooper­
ative stations. LNCS, 2345:ll41-ll46, 2002.

[l4] P. Kyasanur and N. Vaidya. Detection and handling of mac layer
misbehavior in wireless networks. In Proc. IEEE DSN, 2003.

[l5] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An introduc­
tion to the application of the theory of probabilistic functions of a
markov process to automatic speech recognition. Bell Syst. Tech. J.,

62(4):1035-1074, 1983.

[l6] R. Mahajan, M. Rodrig, D. Wetherall, and 1. Zahorjan. Analyzing
the MAC-level behavior of wireless networks in the wild. In Proc.

ACM SIGCOMM, 2006.

[l7] K. Pelechrinis, G. Yan, S. Eidenbenz, and S. V. Krishnamurthy. De­
tecting selfish exploitation of carrier sensing in 802.11 networks. In
Proc. IEEE Infocorn Conference, 2009.

[l8] L. R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Readings in speech recognition,

pages 267-296, 1990.

[l9] S. Radosavac, 1. S. Baras, , and I. Koutsopoulos. A framework for
mac protocol misbehavior detection in wireless networks. In Pro­

ceedings of the 4th ACM workshop on Wireless security, 2005.

[20] Theodore S. Rappaport. Wireless Communications: Principles and
Practice. Prentice Hall, 2002.

[21] M. Raya, 1.-P. Hubaux, and I. Aad. Domino: A system to detect
greedy behavior in IEEE 802.11 hotsopts. In Proc. ACM Mobisys,

2004.

[22] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and 1. Zahorjan.
Measurement-based characterization of 802.11 in a hotspot setting.
In ACM E-WIND, 2005.

[23] D. P. Satapathy and 1. M. Peha. Performance of unlicensed devices
with a spectrum etiquette. In Proc. IEEE GLOBECOM, 1997.

[24] Soekris Engineering. http://www.soekris.com.

[25] 1. Yeo, M. Youssef, and A. Agrawala. A framework for wireless LAN
monitoring and its applications. In Proc. ACM WiSe, 2004.

20 DSN 20lO: Paul et al.

