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Abstract 

With the advent of programmability in radios, it is be­

coming easier for wireless network nodes to cheat to obtain 

an unfair share of the bandwidth. In this work we study 

the widely used 802.11 protocol and present a solution to 

detect selfish carrier-sensing behavior where a node raises 

the CCA (clear channel assessment) threshold for carrier­

sensing, or simply does not sense carrier (possibly ran­

domly to avoid detection). Our approach is based on de­

tecting any asymmetry in carrier-sense behavior between 

node pairs andfinding multiple such witnesses to raise con­

fidence. The approach is completely passive. It requires 

deploying multiple sniffers across the network to capture 

wireless traffic traces. These traces are then analyzed by 

using a machine learning approach to infer carrier-sense 

relationships between network nodes. Evaluations using a 

real testbed as well as ns2 simulation studies demonstrate 

excellent detection ability. The metric of selfishness used to 

estimate selfish behavior matches closely with actual degree 

of selfishness observed. 

Keywords: 802.11 protocol, Hidden Markov Model, MAC 
layer misbehavior. 

1 Introduction 

With the advent of programmable radios, different MAC 
protocol parameters can be manipulated in various ways to 
gain an unfair share of the available wireless bandwidth. 
The case in point is widely used 802.11 networks. Several 
radio interfaces and corresponding device drivers are avail­
able that let the user choose the clear channel assessment 
(CCA) threshold and/or the backoff window size [17]. Re­
seting any one of these appropriately can deliver an unfair 
bandwidth advantage to a selfish node [17] or even launch a 
denial of service attack. For example, a higher CCA thresh-
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old can effectively disable carrier sensing. Thus, the selfish 
node gains more transmission opportunities. This can also 
cause collisions and thereby force the other transmitters in 
the vicinity to backoff. While the selfish node itself may 
also undergo a collision, the backoff period will be shorter 
as it will not freeze its backoff counter with disabled carrier­
sensing. The authors in [17] demonstrate with extensive 
experiments how a selfish node with higher CCA threshold 
can gain a significant throughput benefit for different Trans­
port layer protocol. They also show that this kind of selfish 
node is able to gain at least 5Mbps throughput gain from 
its fair share [17]. Similarly, setting the backoff window 
smaller provides an unfair advantage by backing off for a 
shorter interval on average. 

The situation is expected only to get worse with use of 
more sophisticated radios (e.g., software radios), where any 
part of the protocol can be easily manipulated or entirely 
new protocols are used to gain bandwidth advantage. This 
behooves the research community to develop techniques so 
that such selfish behavior can be detected. While there are 
several efforts to develop spectrum etiquette rules for use 
by unlicensed devices [23] (for accessing fallow spectrum 
such as DTV whitespace, e.g.), there are nearly not enough 
effort to 'police' the spectrum to ensure that all radio de­
vices follow a prescribed protocol or rule. 

A general solution of 'policing' problem is outside the 
scope of this paper. We specifically focus on 802.11 net­
works, where available commodity hardware and software 
easily allow for selfish behavior as mentioned before. Our 
goal here is to detect such selfish behaviors via passive mon­
itoring. The approach is equally applicable to WLANs and 
mesh networks, regardless of the topology or architecture 
and can detect misbehavior on the part of any network node, 
be it a client or access point (AP). 

Looking at the literature, we find that there are several ro­
bust approaches that can detect manipulation of the backoff 
mechanism (see, e.g., DOMINO [21] and the discussions in 
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the related work section (Section 2». However, detecting 
manipulation of the CCA threshold or completely disabling 
carrier sensing is a much harder problem. In our knowl­
edge, the latter has been been addressed in only one recent 
paper [l7] that provides a limited solution. Thus, in this 
work we only address the carrier sensing issue. 

Our general approach is as follows. A distributed set 
of 'sniffers' collect traffic traces from the live network. 
These sniffers do not transmit any packets making the 
method completely unobtrusive. The traffic traces are then 
merged [25, 16, 8] and analyzed using a machine learn­
ing technique to determine asymmetric carrier-sensing be­

havior between network nodes. This means that between 
a given pair of nodes, one is sensing the other node's car­
rier, but not vice versa. Our general assumption is that 

significant asymmetry in favor of a specific node that per­

sists long-term - when witnessed by multiple other nodes 

- points to selfish behavior. This is because such asym­
metry may be very unusual due to normal wireless chan­
nel/interface effects. Our technique is general and can de­
tect selfish behavior on the part of multiple nodes in the 
network. While the technique is off-line, it can run on the 
background periodically to detect selfish behavior. 

Since the approach is completely passive, it is dependent 
on the sufficiency of the available network traffic for ana­
lyzing carrier-sense behavior. The challenge in this case is 
to make accurate identification even (i) in presence of little 
traffic, and traffic of unknown and arbitrary nature, or (ii) 
for selfish node implementations that exhibit probabilistic 
behaviors to avoid detection. There are indeed many other 
issues related to the location of the sniffers and fidelity of 
the merged traces that will impact the accuracy of the tech­
nique to a varying degree. However, these are independent 
issues and have been discussed in related literature. We will 
not have chance to address these issues in the current paper. 

The rest of the paper is organized as follows. We will 
discuss related work in Section II and the broad approach 
in Section III. The details of the HMM-based formulation 
will be covered in Section IV. Sections V has the experi­
mental and simulation-based evaluations. We will conclude 
in Section VI. 

2 Related Work 

2.1 Detecting MAC-Layer Misbehavior in 
802.11 

Much of the work in literature only attempts to detect the 
manipulation of the backoff behavior in 802.11. We sum­
marize them in the following. 

Kyasanur and Vaidya [14] propose a mechanism where 
the receiver directly specify the backoff value to the sender 
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to restrict the sender from being selfish. Cagalj et al. [5] de­
velop a distri buted protocol using a game theoretic approach 
that leads the selfish nodes in the network to a Pareto­
optimal Nash equillibrium. Konoroski [13] also proposes a 
scheme to detect the deviation from the ideal backoff mech­
anism. Radosavac [19] uses a technique based on Sequen­
tial Probability Ratio Test (SPRT) to identify the same kind 
of misbehavior. All these above mentioned studies only deal 
with the selfishness of a node doing only by backoff manip­
ulation. Raya et al. [21] propose and implement DOMINO 
which can detect certain misbehaviors from greedy stations. 
DOMINO can detect nodes that try to get larger share of 
the bandwidth by sending 'scrambled frames,' or using a 
smaller DIFS period before sending DATA packets, or us­
ing oversized NAV to have the medium idle for a longer pe­
riod of time. It also can detect backoff manipulation by the 
greedy nodes. But DOMINO cannot detect any misbehav­
ior by a node regarding the carrier sensing, that is, it cannot 
say whether a node is overhearing the carrier intentionally. 

The above approaches detect mani pulation of the backoff 
behavior. They can be complementary to our work. Detect­
ing manipulation of the carrier-sense behavior, however, is 
a considerably harder problem. The reason for this is that it 
is quite possible that a node may simply fail to detect ongo­
ing transmissions in the neighborhood due to normal wire­
less channel effects. For example, the received power may 
simply be below the normal CCA threshold. Thus, identi­
fying abnormal behavior may be hard. In our knowledge, 
only one paper [17] has addressed this issue. The authors 
here make the assumption that the selfish node that has in­
creased its CCA threshold is unlikely to correctly recognize 
low power transmissions from the AP as legitimate pack­
ets. Thus, by sending low power probes, the AP can po­
tentially detect such nodes. This technique makes a strong 
assumption that packet reception with power lower than 
CCA threshold is not possible, as such packets are treated 
as noise. However, the attacker can avoid detection by sim­
ply changing the CCA threshold only when it transmits a 
packet and reverting back to the normal threshold right af­
ter the transmission.! Also, depending on how the radio 
transceiver is designed, packet reception success may not be 
dependent of the CCA threshold. For example, in a software 
radio implementation, the selfish node may simply turn off 
carrier sensing all together or senses carrier probabilistically 
to avoid detection. In addition the proposed technique is not 
passive. It requires transmission of probes by the APs. This 
may interfere with normal network traffic. 

iThere may indeed be a latency issue that can slow down the selfish 
node if such changes are frequent. For example, a register write to the 
interface card must happen, or a call to the firmware using an API must be 
made, etc. But we do not consider this to be an fundamental issue. With 
the increasing efficiency of the radio hardware the latency may not be any 
serious issue. Also, there is no reason for any latency if the MAC protocol 
is implemented in a software radio platform. 
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2.2 Use of Distributed Sniffers 

Previous studies have also used distributed sniffers to 
conduct a range of measurements over live networks to 
learn various properties such as congestion [10], protocol 
behavior in a hotspot setting [22, 8, 16], etc. The DAIR 
system also uses such an approach for troubleshooting [1] 

and security [2]. More details on similar related works ap­
pear in Section II-B of [11]. In this paper, we employ a 
technique similar to [25] to merge individual traces into a 
unified trace. However, unlike all the previous studies, our 
focus is on identifying selfish carrier sense behavior in the 
network using the merged trace. 

3 Overall Approach 

3.1 Problem Statement 

If one observes live network traffic for long enough time, 
many instances will arise where each node pair have pack­
ets to transmit at their interface queues at the same time. 
In 802.11, if the packet already arrived at the queue when 
the interface was busy (transmitting another packet), it first 
undergoes a random backoff, freezing the backoff counter 
whenever the carrier is sensed busy during the backoff in­
terval. At the end of the backoff the packet is transmitted. If 
the packet arrived at an empty queue instead, it first senses 
carrier. If the carrier is idle, the packet is transmitted imme­
diately. Otherwise, it waits until the carrier is sensed idle. 
It then undergoes a random backoff before transmitting the 
packet. We ignore discussing various inter-frame spacings 
(DIFS, etc), as they have little impact on our study. 

Freezing the backoff counter in the first case, or waiting 
until the carrier is busy in second case is called deferral. 

If we consider node pairs at a time, the deferral behavior 
of each node in the pair being considered with respect to 
the other can be inferred via a learning technique. We will 
describe this technique in the next section. 

Our general goal is to understand the asymmetry in the 
deferral behavior. If Y defers for X's transmission and X 
does not defer for Y's, then the link between X and Y is 
asymmetric. While link asymmetry is possible in wireless 
networks due to interface heterogeneity, it is simply un­
likely if a node X will demonstrate similar asymmetry with 
many such Y's in the same direction. Our strategy is to flag 
such nodes as potentially selfish, with degree of selfishness 
indicated by extent of asymmetries exhibited and the num­
ber of such Y's (called witnesses). 

For modeling convenience, we consider node pairs only 
at a time. Due to the additive nature of the received power, 
a given node may defer due to transmissions from a set of 
other nodes. This is because a single transmission may not 
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generate enough power to cause deferral, however, multi­
ple such concurrent transmissions may still cause deferral 
(physical interference). However, pairwise consideration 
can still be quite powerful in practice. Also, in reality more 
than two concurrent packet transmissions may actually be 
rare even when there are many simultaneous active flows 
in the network. For example, using a major trace collected 
during the SIGCOMM 2004 conference, the authors in [16] 

showed that only 0.45% of packets actually overlapped in 
transmission. Thus, learning more elaborate higher order 
relationships may not be very useful in identifying selfish 
nodes. We do note that this simplification is notfundamen­

tal to our basic technique. The technique can be extended, 

albeit with higher computational cost, to physical interfer­

ence. 

Because of the inherent nature of wireless environment 
(e .. g, fading) a probabilistic measure is suitable. Thus, 
our goal is to estimate, via passive monitoring, the prob­
ability Pdef(X, Y) that node X defers to node Y's trans­
mission and do this estimation for all node pairs in ei­
ther direction. As mentioned before, significant asymme­
try in this probability indicates possible selfishness. Let 
us assume that there is asymmetry in favor of X, i.e., 
Pdef (X, Y) < < Pdef (Y, X). If this is also witnessed by 
more nodes such as Z, i.e., there exists several Z =f=. Y such 
that Pdef(X, Z) < < Pdef(Z, X) we have more confidence 
that X is behaving in a selfish manner. 

3.2 Discussions 

Our technique depends on the conjecture that if one ob­
serves the live network traffic for a long enough period, 
enough of such instances will arise when simultaneous 
transmissions are attempted in the network for each node 
pair. Analysis of the packet trace at these instances can esti­
mate Pdef(X, Y) and Pdef(Y, X). Our goal is to (i) identify 
such instances, and (ii) infer the deferral behaviors during 
such instances. There are several challenges here. First, 
creating a complete and accurate trace is difficult. But in­
complete trace may suffice in circumstances when it is sta­
tistically similar to the complete trace. Second, the self­
ish behavior becomes harder to detect if there is relatively 
low load in the network. High load on the part of network 
nodes makes discovering selfish behavior easier. This is true 
both for the selfish and the 'witness' nodes. Regardless, it 
is important to evaluate the performance of any detection 
technique with varying load on both the selfish and other 
network nodes. Third, heuristics are used to detect selfish 
behavior. But straightforward heuristics may have limited 
power. More details about these challenges appear in [11]. 
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3.3 Approach 

Thus, to determine deferral behaviors among network 
nodes, one needs a rigorous statistical modeling approach, 
instead of relying on heuristic-based trace analysis. Our ba­
sic approach is as follows. We model sender node pairs 
in the network (say, X, Y) via a Markov chain based on 
the MAC layer operation of 802.11. The parameters of this 
chain (essentially the state transition probabilities) are esti­
mated from the observed trace using an approach based on 
the Hidden Markov Model (HMM) [18]. These parameters 
in turn can estimate the deferral probabilities. We devote the 
entire next section describing the HMM-based approach. 

4 Hidden Markov Model For Interactions 
Between Senders 

A hidden Markov model (HMM) [18] consists of a sys­
tem modeled as a Markov chain with unknown parameters, 
where the states of the Markov chain are not directly visi­
ble, but some observation symbols influenced by the states 
are visible. There are standard methods [18, 9, 3] to learn 
the unknown parameters (such as the state transition prob­
abilities of the Markov chain) using the observed sequence 
of observation symbols. HMMs have been used in various 
machine learning fields such as pattern, speech and hand­
writing recognition. We will be using the HMM approach 
for inferring the deferral behavior between pairs of senders 
in an 802.l1 network. 

4.1 Markov Chain 

The 802.l1 MAC protocol can be modeled as a Markov 
chain for each sender [4, 11]. An 802.11 sender, say X, 
resides in one of the following four states - 'idle,' 'back­
off,' 'defer,' and 'transmit.' These four states capture the 
essence of the 802.11 MAC protocol. Figure 1 shows the 
Markov chain modeling the 802.l1 MAC protocol for each 
sender. We are intentionally ignoring interframe spacings 
(e.g., DIFS) to keep the chain simple. Let us call the 4 

states id, bk, de, and tx, respectively for brevity. The high 
level description of this chain can be found in [11]. Here, 
the state transition probabilities between bk and de depend 
on the state of other nodes (Le., transmitting or not) in the 
network, and the deferral probabilities between the sender 
and these nodes. Similar argument applies for the transition 
probability from id to de and tx, and transition probability 
from tx to de and bk. 

Since the transmissions from other nodes impact the 
state transitions for a given node, a combined Markov 
model needs to be considered to get a complete picture of 
the network behavior. Here, each state is a tuple consisting 
of states of individual nodes. Such a Markov chain would 
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cs=o. Q=1 

Figure 1. State transition diagram for a single 

sender. CS = 0 (CS=1) means that the carrier 
is sensed idle (busy). Q = 0 (Q =1) means that 

the interface packet queue is empty (non­

empty). 

lead to a state space explosion with exponential number of 
states, and would thus be intractable. Since our focus in 
this work is on determining the pairwise deferral behav­
ior, we can restrict ourselves to the consideration of a com­
bined Markov chain for only a pair of nodes, say X and 
Y. Each state in this Markov chain is a 2-tuple consisting 
of the states of X and Y. For example, the state where X 
transmits and Y defers would be (tx, de). There could be 
16 possible states in theory. However, 5 of them are not le­
gal (e.g., (de, de), (de, bk) etc.2), leaving 11 possible states. 
See Figure 2 for the combined Markov chain. 

In this Markov chain, the state transition probability be­
tween certain states depends on deferral probabilities be­
tween X and Y. For example, from state (bk, bk) to state 
(tx, de) or (tx, bk) would depend on deferral probability of 
Y with respect to X. To see this, assume that Y carrier 
senses X perfectly. Then when X moves from bk to tx 
state (i .e., starts transmitting as soon as the backoff interval 
is over), Y must also move from bk from de as it defers to 
X's transmission by freezing its backoff countdown timer. 
If instead Y never carrier senses X, it will remain in the bk 
state. 

Note again that this combined Markov chain is speci­
fied for a node pair only, as we are interested in pair-wise 
relationships. This chain can be repeated for all pairs to de­
termine the deferral behavior between all node pairs. When 
considering a particular pair, we filter out the packets of just 
the two senders for analysis, and ignore the other packets. 
This may cause an active node to appear idle for certain pe-

"Note that this Markov chain assumes only two nodes X and Y inter­
act. Thus, for example, the state (de, de) is not possible as both nodes 
cannot defer at the same time. 
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<id,id> 
<bk,id> i, 
<tx,id> x, 
<id,bk> 
<id,tx> Y, 

<bk,bk> 
<tx,de> x, 
<tx,bk> X. 
<de,tx> Y, 
<bk,tx> Y, 
<tx,tx> xv 

Figure 2. Markov model of the combined MAC 

Layer behavior of two nodes (sender side 
only). Note that some arrows are bidirec­

tional. 

riods of time if the node defers for a third node's transmis­
sion. While this may result in our method missing out on 
an opportunity to interpret the interaction between the par­
ticular pair as interfering or non-interfering, it is important 
to note that this does not create any incorrect interpretation. 
Recent studies [16] show that the number of instances of 
3 or more nodes simultaneously being active is much less 
than that of only a pair of nodes being active. Thus, we 
should get enough instances of just a pair of nodes being 
active in a long trace. An alternate but computationally ex­
pensive method could try to identify portions of the trace 
where only the senders in a node pair being considered are 
active. 

4.2 Observation Symbols 

As we do not know the deferral behavior yet, the state 
transition probabilities of the combined Markov chain are 
unknown. Also, the states of this Markov chain are not 
directly visible in the packet trace. We thus need to map 
each state in this Markov chain to an observation symbol 
obtained from the trace that can be used to learn the state 
transition probabilities. There are four possible observation 
symbols in the trace depending on whether X or Y trans­
mits: 

i: neither X, nor Y transmitting. 

x: X transmitting. 

y: Y transmitting. 

978-1-4244-7501-8/10/$26.00 ©201 0 IEEE 

xy: both X and Y transmitting. 

Each state in the Markov chain can be mapped to one of the 
four symbols above. This mapping is not unique as more 
than one state can map to the same observation symbol. For 
example, both states (id, id) and (bk, bk) map to the symbol 
i. Similarly, both (bk, tx) and (de, tx) map to symbol y. 

The difficulty here is that backoff cannot be distinguished 
from defer or idle periods. This ambiguity can be reduced 
by using a heuristic that exploits the time duration of various 
observation symbols. This is elaborated below. 

A backoff interval in 802.11 comes from a random pro­
cess and can last for integral number of slots (20 f-Ls in 
802.11 b). Also, the maximum backoff interval is bounded 
(31 slots in the first backoff stage3). While not impossible, 
it is very unlikely that a defer or idle period will be within 
this bounded interval and also last for exactly an integral 
number of slots. 

This strategy to distinguish between backoff and 
idle/defer periods requires highly accurate clocks (within 
few microseconds). Without a specialized technique, the 
experimentally observed accuracy is not sufficient. We thus 
use a weaker heuristic in this work that does not require 
strong clock accuracy. We assume that defer/idle periods 
are always longer than 31 slots and backoffs are always 
equal or shorter. This, however, introduces errors when air­
time of an 802.11 frame is less than 31 slots (620 f-Ls for 
802.11 b4). This also introduces errors for very small idle 
times. With these sources of error, the results in the next 
section provide only a lower bound on the accuracy obtain­
able by the base technique. In our future work, we will 
explore possibilities of using accurate timing information to 
remove these inaccuracies. Moreover, the parameters of this 
heuristic is not fundamental to our technique. We can use 
this technique by changing the paramaters for 802.11a1g. 

With the above weaker heuristic, each observation sym­
bol can be of two types. The symbol i can be either is or ii, 
corresponding to short (-s; 31 slots) and long (> 31 slots) 
respectively. According to the heuristic, is is most likely 
output by (bk, bk) state, while il is most likely output by 
(id, id) state, for example. Similarly, the symbols x and y 

can be either Xs and Xl, and Ys and Yl, respectively. Figure 2 
shows the observation symbols for each state. 

With the help of the heuristic, we can distinguish be­
tween backoff and idle/defer periods. But we still cannot 
differentiate between idle and defer. For this reason, both 
the states (tx, id) and (tx, de) map to the same observa­
tion symbol Xl. This implies that the transition from state 

3 As a simplification, we develop the model only for the first backoff 
stage here. This implicitly assumes that retransmissions are rare (which 
has been true in our experiments). The general approach can be extended to 
handle multiple backoff stages by observing the number of retransmissions 
in the trace). 

4This means TCP packets with payload less than 400 bytes in 802.llb 
to give the reader an idea. 
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(tx, id) to state (tx, de) will not be visible in the merged 
trace as there is no change in the observation symbol. Thus 
any transition from state (tx, id) to any other state, for ex­
ample, state (id, bk) via state (tx, de) will not be correctly 
interpreted. To overcome this problem, we force transition 
links from state (tx, id) to states which have incoming tran­
sition from state (tx, de). We refer to these links as virtual 
links. Similarly, we also add virtual links from state (id, tx) 
symmetrically. After we calculate the transition probabili­
ties of the model using the technique described in the fol­
lowing subsection, we remove such virtual links and dis­
tribute the probability on each such virtual link to the corre­
sponding sequence of valid transition links. 

Each packet in the merged packet trace consists of a 
timestamp for when the packet was received at the sniffer, 
the id of the sender, size of the packet, and the rate at which 
it was transmitted. This information is parsed to obtain 
the sequence of above observation symbols from the trace. 
Based on this sequence, we use the following technique to 
learn the state transition probabilities of the Markov chain, 
that in turn will provide the probability of deferral between 
the senders. 

4.3 Formal Specification and Learning 

We now provide the complete formal specification of the 
HMM using standard notations [18]. The HMM consists of 
the following: 

• Set S of N states, where N = 11 .  S is given by: 
S = {Si} = { (id, id), (bk, id), (tx, id), (id, bk), 
(id, tx), (bk, bk), (tx, de), (tx, bk), (de, tx), 
(bk, tx), (tx, tx)}. 

• Set V of M observation symbols, where M = 7. V is 
given by: V = {is, iI, xs, Xl, Ys, Yl, xy}. 

• Matrix A of state transition probabilities, indicated by 
A = [aij l, where aij is the transition probability from 
state Si to Sj. This matrix is unknown at the outset and 
will be determined. Note that some state transitions 
are invalid and such aij is set to o. Such transitions are 
absent in Figure 2. 

• Matrix B of observation symbol probabilities, indi­
cated by B = [bjkl, where bjk is the probability that 
the observation symbol is Vk for state Sj. In our case, 
observation symbols are deterministic for each state. 
But they are not unique. The mapping from states to 
symbols are shown in a table within Figure 2. 

• Vector 7r of the initial state distribution, indicated by 
7r = [7ril, where 7ri is the probability of initial state 
being Si. We use 7ri = liN for all i, 1 :S i :S N. 
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The above defines the HMM, >. = (A, B, 7r) . The 
packet trace provides the observation sequence 0 = 

01, O2, ... OT, where each observation Ot E V, and T 

is the number of observations in the sequence. 
Given the above HMM >. and the observation sequence 

0, we wish to learn the model parameters>' = (A, B, 7r) 
that maximize P(OI>'). This is a difficult problem, and 
there is no optimal algorithm for it. We can, however, use 
the expectation-modification (EM) algorithm, which is an 
iterative method to determine >., such that P(OI>') is lo­
cally maximized. The EM algorithm alternates between an 
expectation (E) step, which computes the model parame­
ters most likely to produce the observation, and a modifica­
tion (M) step, which computes the maximum likelihood of 
model parameters across multiple E steps [9]. We use the 
well-known Baum-Welch method, which is a type of EM 
algorithm, based on the forward-backward algorithm devel­
oped by Baum et al. [3]. The method ensures that in every 
estimation step, we find a model which is more likely to pro­
duce the observation. Thus, if we estimate the parameters 
of the model>. to get X, then P(OI>') � P(OIX). 

While using the Baum-Welch method, we do not read­
just the parameters Band 7r in the model >.. We initialize 
the state transition probabilities such that equal probability 
is assigned to all the outgoing valid transitions from each 
state. This ensures that there is no initial bias in the model 
towards interfering or non-interfering pair of nodes. This 
aids in quick convergence of the method. We also need 
to use the scaling technique in the procedure [15]. This is 
needed as we deal with very long sequences of observations 
and continued multiplications of certain small fractions cre­
ate problems with numeric accuracies. 

4.4 Detecting Asymmetric Behavior 

Let II = [IIil be the stationary (steady state) distribution 
of the states. Once the transition probabilities A = [aij 1 are 
learnt, II = [IIil can be determined as II = limn-HXl 7r An. 
The convergence is guaranteed as A is a stochastic matrix. 
Now, asymmetric behavior can be detected the following 
fashion. 

If we represent IIi's as P( id, id), P(bk, id) etc, the prob­
ability that X has a packet to transmit and it defers while Y 
transmits is given by 

p (X Y) _ 

P(de, tx) 
def , - P(de, tX) + P(bk, tX) + P(tx, tx) 

The opposite probability (i.e., Y has a packet to transmit 
and it defers while X transmits) is likewise 

p (Y X) _ 

P(tx, de) 
def , - P(tx, de) + P(tx, bk) + P(tx, tx) 

The difference between Pdef(X, Y) and Pdef(Y, X) char­
acterizes asymmetry. Larger the difference, higher is the 
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asymmetry. Due to the nature of our approach, the asym­
metry is tested between a node pair at a time. A positive 
(negative) difference indicates that Y (X) is getting a band­
width advantage due to asymmetric carrier sensing. In our 
evaluation, we have used the difference with a simple nor­
malization as the 'metric of asymmetry,' TJ(X, Y), except 
when the two probabilities are both close to zero. Thus, 
when both Pdef(X, Y) and Pdef(Y, X ) < E (E was cho­
sen to 0.01 in the evaluations), the metric of asymmetry, 
TJ(X, Y), is given by, 

Pdef(Y, X ) - Pdef(X, Y) , 

else it is given by, 

Pdef(Y, X ) - Pdef(X, Y) 
max(Pdef(Y, X ) , Pdef(X, y))' 

Note that TJ(X, Y) = -TJ(Y, X ). 

4.5 Selecting Witnesses 

In general, each network node X must be evaluated for 
selfish behavior. By default, every other node Y acts as 
witness and the above metric of asymmetry is evaluated for 
the pair (X, Y). Thus, for each network node X, we take 
the average of the metric of asymmetry TJ(X, Y) over all 

the witnesses Y that provide a positive value. The negative 
values are discounted as they will be accounted when Y is 
evaluated with X as the witness. We call this average the 
'selfishness metric'. We will evaluate this metric later in our 
simulations. 

However, if X and Y are not within carrier sense range 
of each other (i.e., they never hear each other), Y cannot 
serve as an effective witness. This is because P(de, tx) or 
P(tx, de) would evaluate to zero. (In practice, due to mea­
surement noise, they evaluate to a very small value close to 
zero.) Thus, the metric of asymmetry is zero. While this 
is correct, this does present a problem. Assume that X is 
indeed selfish in a 4 node network and witness Y I detects a 
very large (i.e., TJ(X, Y I) is close to 1) metric of asymme­
try. However, witnesses Y 2  and Y 3 do not hear X at all (and 
vice versa). They offer the metric (TJ(X, Y2) and TJ(X, Y 3)) 
as close to O. Here witness Y I is an effective witness while 
witness Y 2  and Y 3 are ineffective witnesses. Without any 
further information, if we aggregate these measures using 
an average, we obtain a low confidence in X's selfishness 
(about 0.3 in this example), even when we have one perfect 
witness and the other witnesses are clearly ineffective. On 
the other hand, relying on a single witness (e.g., Y I) that 
points to a severe asymmetry may not be right as this may 
simply be due to random wireless channel/interface effects 
and not due to a systematic selfish behavior. Thus, this can 
raise false alarms. 
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This problem cannot be addressed without some addi­
tional knowledge of the network regarding which node can 
serve as a effective witness. Ideally, we would only rely 
on witnesses that are within the carrier sense range from a 
potential selfish node. The more such nodes, the better. 

To address this issue, we use two simple heuristics 
named as HI and H2. For heuristic HI, we assume that 
the sniffer locations are known, as well as some bounds on 
the carrier sense range (Re) and transmit range (RT) for 
the network nodes. Then the sniffers that are separated by 
at least Re + 2RT distance, must sniff nodes that cannot 
hear each other. Thus in other words, for a node X sniffed 
by a sniffer B x and another node Y sniffed by a sniffer By, 
node Y will not be an effective witness of node X if Bx and 
By are separated by at least Re + 2RT distance. This sim­
ple heuristic eliminates many nodes that should not serve 
as witness to each other. Note that this may not remove all 
ineffective witnesses, and if the bounds are incorrect, this 
technique may even remove some effective witnesses. But 
this technique is practical and easy to use, and at minimum 
eliminates a large number of far-away witnesses that cannot 
be effective by being outside the carrier-sense range. 

For heuristic H2, we do not even need to assume any­
thing. In H2, Y is an effective witness of X, if they are 
both sniffed by a common sniffer. H2 will surely remove 
all the ineffective witnesses, and may also remove some ef­
fective witnesses. 

For any given heuristic, for each network node X we 
take the average of the metric of asymmetry TJ(X, Y) over 
all the nodes Y that are selected as effective witnesses by 
the heuristic and that provide a positive value for TJ. Then 
we calculate the 'selfishness metric' by a simple averaging. 

5 Evaluation 

We have performed two sets of evaluations: (i) a set of 
microbenchmarking experiments to understand the effec­
tiveness of the approach and (ii) a set of ns2 simulations 
to study larger networks and complex selfish behaviors. 

5.1 Experiments 

The experiments essentially achieve careful micro­
benchmarking, where only two network links are used but 
wireless channel quality, traffic load and selfish behaviors 
are varied over a wide range. The transmitter of one link 
is 'selfish'; the other transmitter is regular and acts as the 
sole 'witness.' Each link is monitored by a 'sniffer' node 
in close proximity of the transmitter. We also use a 'bea­
con' node, whose sole responsibility is to transmit 802.11 
beacons at regular intervals to provide a common time base 
needed for the trace merging. In a normal deployment these 
beacons will be supplied by existing APs. We use 802.11a 
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in preference to more widely used 802.11 big to reduce ex­

ternal interference. We have verified that no other 802.11a 

transmissions exist in our testbed location in the channel we 

used for our experiments (channel 52). 

Each network node is essentially a single-board com­

puter (SBC), meant for embedded use, with an 802.11a/b/g 

interface. We use Soekris 4826 boards [24] and Atheros 

5213 chipset-based 802.11a/b/g mini-PCI cards manufac­

tured by Winstron connected to a 5 dBi rubber-duck an­

tenna. The boards run pebble Linux with rnadwifi device 

driver for the 802.11 interface. The 802.11 interfaces in the 

network nodes are set up in 'ad hoc' mode and the sniffer 

nodes in 'monitor' mode. The lowest possible PHY layer 

rate (6 Mbps) and a large packet size (1470 bytes) is cho­

sen for the experiments. This is because, at higher rates or 

smaller packets, the sniffers cannot capture all packets in 

our low-cost embedded hardware, likely due to inefficien­

cies in interrupt processing. Tcpdump is used for packet 

capture in the sniffers. The radiotap headers in the captured 

packets are used to record SNR. 

The selfish transmitter achieves selfishness by not sens­

ing carrier before transmitting. To achieve this we have 

used the antenna switching technique described in [6]. The 

802.11 interface uses two antenna connectors for diver­

sity. We have only one antenna connected to one con­

nector, keeping the other connector unconnected. Using 

driver-level commands, any one of the connectors can be 

selected as the receiving/transmit antenna. Selecting the un­

connected antenna as the receiving antenna effectively dis­

ables carrier sense.s The impact of the selfish behavior can 

be varied by simply varying the distance between the self­

ish and witness nodes. A close distance means the witness 

node is impacted significantly due the selfish behavior as 

the RSS at the witness node is high. A large distance means 

that RSS is low and often the witness node cannot hear the 

selfish node due to channel fading, and thus the selfishness 

causes little impact. 

The benchmarking experiments are performed by in­

creasing the distance between the two transmitters (selfish 

and witness) from a very small value at steps of 3 ft in 28 

discrete steps. For each position, (i) the average SNR from 

the selfish to the witness transmitter is measured, and (ii) 

iperf is used to transmit UDP packets at different offered 

loads on their respective links for 60 sec. We use offered 

loads of 6 and 4 Mbps for iperf, denoting high and low 

loads, respectively. We experiment with both loads on the 

selfish node, while the witness node has only high load. 

Figure 3 plots the estimated metric of asymmetry T) for 

the <selfish, witness> node pair for each of the experi-

SNote that selfishness can also be achieved by resetting the CCA thresh­
old as in [17]. However, in our hardware we have found that the antenna 
switching technique is more foolproof than using an increased CCA thresh­
old. 
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Figure 3. Experimental results with varying 
load on the selfish node. 

ments. The plots are color-coded based on the load. The 

asymmetry is clearly higher with higher SNR. Note that 

with lower load on the selfish node the asymmetry tends 

to be somewhat lower as expected. Also, note significantly 

lower asymmetry when the SNR is very high (i.e., nodes 

are very close). This is an artifact of our experimental tech­

nique. The selfish node starts picking up some signal at 

close ranges even when the antenna is disconnected, and 

thus it stops being selfish. So, much lower asymmetry is 

detected for very high SNRs. 

Note that the above two node micro-benchmarking is 

sufficient to derive an insight into what would happen in 

a multiple node network. Essentially, nodes still need to be 

evaluated in a pair wise fashion. For each potential self­

ish node, we need to evaluate the metric of asymmetry with 

each possible witness node independently. Note again, (as 

discussed in Section 3), we are currently considering pair­

wise interface only. But several other issues remain to be 

evaluated - (i) how to effectively combine the metric of 

asymmetry, (ii) how suitable are the witness nodes. We will 

explore these issues via a packet level simulation using the 

ns2 simulator. 

5.2 Simulations 

Ns2 simulations let us implement various degrees of self­

ishness, where the selfish node senses carrier with only a 

certain probability. We use the term degree of selfishness 

(Ps) to indicate that the selfish node senses carrier with 

probability equal to 1 - Ps. Ns2 simulations also make it 

easier to investigate larger networks, where there are many 

nodes, possibly with more than one selfish node with vary­

ing traffic and degrees of selfishness. 

In our simulated scenario, there are 40 network nodes 

distributed randomly in a square region. We chose a de-
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Figure 4. Simulation results for a 40 node net­

work. Node 2 is the only selfish node. The 
estimated selfishness metric using heuristic 

H2 is shown for each node for each of the 6 
sets of simulations that are run with different 

degree of selfishness of node 2. 

ployment typical of dense WiFi client distribution in in­

door office environments, assuming that there is one node 

in 300 sq. feet on average. The default ns2 wireless channel 

model is extended to include shadowing [20]. This intro­

duces randomness in the transmission range of a node in­

stead of making it a perfect disk. Shadowing parameters are 

taken from [12] where a set of measurements was done to 

model such parameters in an indoor environment. A set of 

feasible network links are chosen randomly and I-hop UDP 

flows are generated with randomly chosen loads (between 

0.5-1 Mbps). Each flow is active (and then inactive) only 

for a random interval of time. Both intervals are chosen 

from an exponential distribution with a mean of 5 sec. Note 

that the exact traffic parameters are not important for our 

work. All that is important is that enough traffic is recorded 

so that for each pair of nodes that are potentially within the 

carrier sense range there are concurrent packet transmis­

sion attempts. This ensures that any possible selfish node 

will find enough witnesses. 

We deploy a set of 10 sniffers at random locations. 

Among the 40 network nodes, 1, 2 or 3 nodes are selfish. 

The degree of selfishness is varied. For each pair of nodes, 

we evaluate the metric of asymmetry by using the procedure 

in Section 4. For each network node X, we measure the 

selfishness metric in three ways as discussed in Section 4.5: 

(i) using all possible witness nodes, (ii) using witness nodes 

based on heuristic HI, and (iii) based on heuristic H2. 

Figure 4 plots the selfishness metric of each node in the 

scenario with one selfish node with varying degree of self­

ishness where the witness nodes are selected using heuristic 

H2. Note that the metric has a very visible peak only for the 

selfish node. The values of metric for the selfish nodes are 

roughly similar to the degree of selfishness. 

Because of space limitation we do not present the similar 
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Figure 5. CDF of 'estimation error' for the 
selfishness metric. Three different scenarios 

are presented where number of selfish nodes 

are varied (1, 2 or 3) and witness nodes are 
identified in three different ways. 
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Figure 6. Simulation results for the sparse 
network. 

plots for the scenarios with 2 and 3 selfish nodes using dif­

ferent heuristics. We instead show the overall statistics that 

summarizes how good our detection is. For each scenario 

and for each type of witness node identification technique, 

we evaluate for each node the 'estimation error' as the al­

gebraic difference between the computed selfishness metric 

and the actual degree of selfishness of that node. All nodes 

(selfish and regular) are included. The estimation error is 

plotted as a CDF in Figure 5. Nine plots are shown for three 

techniques used to identify the witness nodes and for three 

different numbers of selfish nodes. The CDF shows that the 

estimation error is very small in general and heuristic H2 

performs somewhat better than the other two techniques in 

general. 

In this scenario, the heuristics do not perform much bet­

ter than the no heuristic case, because the no heuristic case 

itself performs very well. The reason for this is the high 

density of the network. To demonstrate the power of the 

heuristics we consider a sparser network with 40 nodes dis­

tributed randomly in squared region with one node in 1500 
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sq. feet on average. Different scenarios are created by vary­

ing the number of selfish nodes (1, 2 or 3) with degree of 

selfishness = 1. Because of the sparsity of the network we 

now have to deploy more sniffers to capture all network 

traffic. So, this time we deploy 40 sniffers randomly as 

before. Figure 6 shows the average estimated selfishness 

metric measured in three ways as before only for the selfish 

node(s). Note that as expected (i) estimation becomes bet­

ter when we identify witness nodes using the heuristics in 

compared to using all the nodes as witness; (ii) H2 is gen­

erally a better heuristic, and (iii) estimation becomes worse 

with a larger number of selfish nodes. 

6 Conclusions 

We have investigated a novel machine learning-based ap­

proach to detect selfish carrier-sense behavior in an 802.11 

network. The technique uses a merged packet trace col­

lected via distributed sniffing. It then recreates the MAC 

layer interactions on the sender-side between network nodes 

via a machine learning approach using the Hidden Markov 

Model. The power of this technique is that it is purely pas­

sive and does not require any access to the network nodes. 

It can be used as a third-party solution for detecting MAC­

layer misbehavior in 802.11 networks. Though it works of­

fline, but it can be used periodically every few minutes (for 

example) to detect selfish nodes. Evaluations show excel­

lent detection ability in presence of varying load and degree 

of selfishness. 

There are indeed some limitations of the technique as 

presented here. So far, we only assumed pairwise inter­

ference and ignored physical interference (see discussions 

in Section 3.1) arguing that the improvement in accuracy 

will be relatively minor. Also, 802.11 retransmissions were 

ignored in the modeling to reduce complexity. These are 

not fundamental limitations and can be accommodated with 

higher computational cost, but are likely unnecessary. So 

long as enough of the common baseline case that we mod­

eled indeed show up in the traffic trace, we will have a very 

good estimation accuracy. Our future work will include 

more evaluations to demonstrate this aspect. We will also 

study the impact of inaccuracy in trace gathering. Finally, 

the proposed technique along with an established technique 

for selfish backoff manipulation [19, 21] can form a com­

plete solution to detect selfish behaviors in 802.11 networks. 
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