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Minimum Interference Channel Assignment in
Multi-Radio Wireless Mesh Networks

Anand Prabhu Subramanian, Himanshu Gupta, Samir R. Das and Jing Cao

Abstract— In this paper, we consider multi-hop wireless mesh
networks, where each router node is equipped with multiple radio
interfaces and multiple channels are available for communication.
We address the problem of assigning channels to communication
links in the network with the objective of minimizing overal l
network interference. Since the number of radios on any node
can be less than the number of available channels, the channel
assignment must obey the constraint that the number of different
channels assigned to the links incident on any node is atmostthe
number of radio interfaces on that node. The above optimization
problem is known to be NP-hard.

We design centralized and distributed algorithms for the above
channel assignment problem. To evaluate the quality of the
solutions obtained by our algorithms, we develop a semidefinite
program and a linear program formulation of our optimizatio n
problem to obtain lower bounds on overall network interference.
Empirical evaluations on randomly generated network graphs
show that our algorithms perform close to the above established
lower bounds, with the difference diminishing rapidly with
increase in number of radios. Also,ns-2 simulations as well as
experimental studies on testbeddemonstrate the performance
potential of our channel assignment algorithms in 802.11-based
multi-radio mesh networks.

Index Terms— Multi-Radio Wireless Mesh Networks, Channel
Assignment, Graph Coloring, Interference, Mathematical Pro-
gramming.

I. I NTRODUCTION

There is an increasing interest in using wireless mesh networks
as broadband backbone networks to provide ubiquitous network
connectivity in enterprises, campuses, and in metropolitan areas.
An important design goal for wireless mesh networks iscapacity.
It is well-known that wireless interference severely limits network
capacity in multi-hop settings [1]. One common technique used
to improve overall network capacity is use of multiple channels.
Essentially, wireless interference can be minimized by using
orthogonal (non-interfering) channels for neighboring wireless
transmissions. The current IEEE 802.11 standard for WLANs
(also used for mesh networks) indeed provides several orthogonal
channels to facilitate the above. Presence of multiple channels
requires us to address the problem of which channel to use for
a particular transmission; the overall objective of such anassign-
ment strategy is to minimize the overall network interference.

Dynamic Channel Assignment.One of the channel assignment
approaches is to frequently change the channel on the inter-
face; for instance, for each packet transmission based on the
current state of the medium. Suchdynamic channel assignment
approaches [2], [3], [4], [5] require channel switching at avery
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fast time scale (per packet or a handful of packets). The fast-
channel switching requirement makes these approaches unsuitable
for use with commodity hardware, where channel switching
delays itself can be in the order of milliseconds [6] which isan
order of magnitude higher than typical packet transmissiontimes
(in microseconds). Some of the dynamic channel assignment
approaches also require specialized MAC protocols or extensions
of 802.11 MAC layer, making them further unsuitable for use
with commodity 802.11 hardware.

Static or Quasi-static Channel Assignment.Due to the difficulty
of use of above dynamic approach with commodity hardware,
there is need to develop techniques that assign channels statically
[7], [8], [9], [10], [11]. Such static assignments can be changed
whenever there are significant changes to traffic load or network
topology; however, such changes are infrequent enough thatthe
channel-switching delay and traffic measurement (see Section II)
overheads are inconsequential. We refer to the above asquasi-
static channel assignments. If there is only one radio interface
per router, then the above channel assignment schemes will have
to assign thesamechannel to all radios/links in the network to
preserve network connectivity. Thus, such assignment schemes
require use of multiple radio interfaces at each node. Due toboard
crosstalk or radio leakage [10], [12], commodity radios on anode
may actually interfere even if they are tuned to different channels.
However, this phenomena can be addressed by providing some
amount of shielding or antenna separation [12], or increased
channel separation (as is the case in 802.11a) [8].

Problem Addressed.In our article, we address the problem of
quasi-static assignment of channels to links in the contextof
networks with multi-radio nodes. The objective of the channel as-
signment is to minimize the overall network interference. Channel
assignment is done as some variation of a graph coloring problem;
but it has an interesting twist in the context of mesh networks. The
assignment of channels to links must obey theinterface constraint
that the number of different channels assigned to the links incident
on a node is at most the number of interfaces on that node. Differ-
ent variations of this problem have been shown to be NP-hard [7],
[9] before. Thus, efficient algorithms that run reasonably fast and
provide good quality solutions are of interest. Since computing
the optimal is intractable and approximation algorithms are still
an open question, we take the approach of computing abound
on the optimalusing mathematical programming approaches, and
develop heuristics that perform very close to the obtained bounds
on the optimal.

Our Contributions. For the above described channel assignment
problem, we develop a centralized and a distributed algorithm.
The centralized algorithm is based on a popular heuristic search
technique called Tabu search [13] that has been used in the past in
graph coloring problems. The distributed approach is motivated
by the greedy approximation algorithm for MaxK-cut problem



2

in graphs [14]. To evaluate their performances, we develop
two mathematical programming formulations, using semidefinite
programming (SDP) and integer linear programming (ILP). We
obtain boundson the optimal solution by relaxing the ILP and
SDP formulations to run in polynomial time.Finally, detailed ns-
2 simulations as well as experimental study in a 11-node multi-
radio testbed demonstrate the full performance potential of the
channel assignment algorithms in 802.11 based multi-radiomesh
networks.

The salient features of our workthat set us apart from the
existing channel assignment approaches on multi-radio platforms
are as follows.

• Our approach is “topology preserving,” i.e., all links that
can exist in a single channel network also exist in the
multichannel network after channel assignment. Thus, our
channel assignment does not have any impact on routing.

• Our approach is suitable for use with commodity 802.11-
based networks without any specific systems support. We
do not require fast channel switching or any form of MAC
layer or scheduling support. While our algorithms indeed use
interference and traffic models as input, such models can be
gathered using experimental methods.

• Our work generalizes to non-orthogonal channels, including
channels that are supposedly orthogonal but interfere because
of crosstalk or leakage [12].

• Ours is the first work that establishes good lower bounds
on the optimal network interference, and demonstrates good
performance of the developed heuristics by comparing them
with the lower bounds.

Paper Organization. The rest of the paper is organized as
follows. We start with describing the network model and the
formulation of our problem in Section II, and discuss related
work in Section III. We present our algorithms in Section IV
and Section V respectively. In Section VI, we obtain lower
bounds on the optimal network interference using semidefinite
and linear programming. Section VII presents generalizations of
our techniques. We present simulation and experimental results
in Sections VIII and IX, respectively.

II. PROBLEM FORMULATION

In this section, we first present our network model and formu-
late of our channel assignment problem.

Network Model. We consider a wireless mesh network with
stationary wireless routers where each router is equipped with
a certain (not necessarily same) number of radio interfaces. We
model thecommunication graphof the network as a general
undirected graph over the set of network nodes (routers). An
edge (i, j) in the communication graph is referred to as a
communication linkor link, and signifies that the nodesi and
j can communicate with each other as long as both the nodes
have a radio interface each with a common channel. There are a
certain number of channels available in the network. For clarity of
presentation, we assume for now that the channels are orthogonal
(non-interfering), and extend our techniques for non-orthogonal
channels in Section VII.

Interference Model. Due to the broadcast nature of the wireless
links, transmission along a communication link (between a pair
of wireless nodes) may interfere with transmissions along other
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Fig. 1. Communication graph and corresponding conflict graph.

communication links in the network. Two interfering links cannot
engage in successful transmission at the same time if they transmit
on the same channel. Theinterference modeldefines the set of
links that can interfere with any given link in the network. There
have been various interference models proposed in the literature,
for example, the physical and protocol interference models[1],
[15]. The discussion in this paper is independent of the specific
interference model used as long as the interference model is
defined on pairs of communication links.

For clarity of presentation, we assume abinary interference
model for now (i.e., two links either interfere or do not inter-
fere), and generalize our techniques to fractional interference in
Section VII. Moreover, in our approach of quasi-static channel
assignment, the level of interference between two links actually
depends on the traffic on the links. However, for clarity of
presentation, we assume uniform traffic on all links for now,and
generalize our techniques to non-uniform traffic in SectionVII.

Conflict Graph.Given an interference model, the set of pairs of
communication links that interfere with each other (assuming
them to be on the same channel) can be represented using a
conflict graph [15]. To define a conflict graph, we first create
a set of verticesVc corresponding to the communication links in
the network. In particular,

Vc = {lij | (i, j) is a communication link}.

Now, the conflict graphGc(Vc, Ec) is defined over the setVc

as vertices, and aconflict edge(lij , lab) in the conflict graph
is used to signify that the communication links(i, j) and (a, b)

interfere with each other if they are on the same channel. The
above concept of a conflict graph can be used to represent any
interference model. As defined above, the conflict graph doesnot
change with the assignment of channels to vertices in the conflict
graph.

We illustrate the concept of conflict graph in Figure 1. The
wireless network represented in Figure 1 has five network nodes
A,B, . . . , E and four communication links as shown in the
communication graph (see Figure 1(a)). The conflict graph (see
Figure 1(b)) has four nodes each representing a communication
link in the network. In this figure, we assume an 802.11 like
interference model where the transmission range and interference
range are equal. When RTS/CTS control messages are used links
within two hops interfere. Thus, the communication link(A,B)

interferes with the communication links(B, C) and (C, D), and
not with (D, E).

Notations. Here, we introduce some notations that we use
throughout this paper.
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• N , the set of nodes in the network.
• Ri, the number of radio interfaces on nodei ∈ N .
• K = {1, 2, . . . , K}, the set ofK channels.
• Vc = {lij | (i, j) is a communication link}.

• Gc(Vc, Ec), the conflict graph of the network.
• For i ∈ N , E(i) = {lij ∈ Vc}, i.e., E(i) is set of vertices in

Vc that represent the communication links incident on node
i.

In addition, throughout this paper, we use variablesu, v to refer
to vertices inVc, variablesi, j, a, b to refer to nodes inN , and
the variablek to refer to a channel. Since assigning channel can
be thought of as coloring vertices, we use the terms channel and
colors interchangeably throughout our paper.

Channel Assignment Problem.The problem of channel assign-
ment in a multi-radio wireless mesh network can be informally
described as follows. Given a mesh network of router nodes with
multiple radio interfaces, we wish to assign a unique channel to
each communication link1 in the network such that the number
of different channels assigned to the links incident on any node
is at most the number of radios on that node. Since we assume
uniform traffic on all links for now, we assign channels to all
links, and define thetotal network interferenceas the number
of pairs of communication links that are interfering (i.e.,are
assigned the same channel and are connected by an edge in the
conflict graph). The objective of our problem is to minimize the
above defined total network interference,as it results in improving
overall network capacity [1].

A note is in order regarding our choice of optimization objec-
tive. While a natural objective for the channel assignment problem
would be to directly maximize overall network throughput, it
turns out that modeling network throughput analytically ina
random access based medium access model is hard. The previous
works in the literature ([15], [16], [17], [18]) that maximize
overall network throughput assume a time-slotted synchronized
medium access model with scheduling as one part of the problem.
In a time-slotted synchronized medium access model, modeling
throughput is much easier relative to a CSMA based random
access model. There indeed has been several attempts in recent
literature to model link capacity [19], [20] in a CSMA based
network using measurements from real 802.11-based networks.
However, these models are quite complex and it is difficult touse
them as objective functions for an optimization problem andat the
same time develop efficient solution approaches. In our work, our
interest is in developing solutions for use with commodity systems
based on 802.11. Thus, in our channel assignment problem we
use an objective function than can be formally defined using
the conflict graph model and optimized efficiently. With this
argument, network interference is a more practical choice relative
to network throughput.

Consider a wireless mesh network over a setN of network
nodes. Formally, thechannel assignment problemis to compute
a function f : Vc → K to minimize theoverall network inter-
ferenceI(f) defined below while satisfying the belowinterface
constraint.

Interface Constraint.

∀i ∈ N, |{k | f(e) = k for some e ∈ E(i)}| ≤ Ri.

1Note that merely assigning channels to radios is not sufficient to measure
network interference/capacity, since a link still can use one of many channels
for transmission.

Network InterferenceI(f).

I(f) = |{(u, v) ∈ Ec | f(u) = f(v)}|. (1)

If we look at assignment of channels to vertices as coloring
of vertices, then the network interference is just the number of
monochromatic edges in the vertex-colored conflict graph. The
channel assignment problem is NP-hard since it reduces to Max
K-cut (as discussed below).

Input Parameters – Measuring Interference and Traffic. Note
that, under the simplying assumption of uniform traffic, the
only input to our channel assignment problem is the network
conflict graph. The conflict graph (along with the edge weights
for fractional interference; see Section VII) can be computed
using methods similar to recently reported measurement-based
techniques in [21], [20]. These techniques are localized, due to
the localized nature of interference, and hence, can be easily run
in a distributed manner. Also, in most cases (for static network
topologies), the above measurements need to be done only one-
time. For the case of non-uniform traffic, we need to measure
average (over the time scale of channel assignment) traffic (i.e.,
the function t(.) of Section VII) on each link. Such traffic
measurements can be easily done using existing software tools
(e.g., COMO [22]).

Relationship with Max K-cut. Given a graphG, the Max
K-cut problem [14] is to partition the vertices ofG into K

partitions in order to maximize the number of edges whose
endpoints lie indifferent partitions. In our channel assignment
problem, if we view vertices of the conflict graph assigned toa
particular channel as belonging to one partition, then the network
interference is actually the number of edges in the conflict
graph that have endpoints insamepartition. Thus, our channel
assignment problem is basically the MaxK-cut problem with
the added interface constraint. Since MaxK-cut is known to be
NP-hard, our channel assignment problem is also NP-hard.

III. R ELATED WORK

The use of multiple channels to increase capacity in a mul-
tihop network has been addressed extensively. Generally, there
have been two types of approaches, viz., (i) Fast switching of
channels (possibly, on a per-packet basis) on a single radio, or
(ii) Assigning channels to radios for an extended period of time
in a multi-radio setting.

Fast Switching of Channels.In MMAC protocol [3], the authors
augment the 802.11 MAC protocol such that the nodes meet at a
common channel periodically to negotiate the channels to use for
transmission in the next phase. In SSCH [4], the authors propose
dynamic switching of channels using pseudo-random sequences.
The idea is to randomly switch channels such that the neighboring
nodes meet periodically at a common channel to communicate.In
DCA [2], the authors use two radios - one for the control packets
(RTS/CTS packets) and another for data packets. The channelto
send the data packet is negotiated using the control packetsand
the data packets are sent in the negotiated channels. In AMCP[5],
the authors uses similar notion of a control channel, but a single
radio and focus on starvation mitigation. In [23] the authors use
a channel assignment approach using a routing protocol and then
use these channels to transmit data. For coordination, control
channels are used. In [24] two radio and single radio multichannel
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protocols are proposed, but separate control channels are not
needed.

All the above protocols require a small channel switching delay
(of the order of hundred microseconds or less), since channels are
switched at a fast time scale (possibly, on a per-packet basis). But,
the commodity 802.11 wireless cards incur a a channel switching
delay of the order of milliseconds (based on our observations), as
channel switching requires a firmware reset and execution ofan
associated procedure. Similar experiences were reported in [6]. ,
and in particular, it has been shown in [4], [25] that packet-based
channel assignment may not be feasible in a practical setting [26].
In addition, the above approaches require changes to the MAC
layer. Thus, the above approaches are not suitable with currently
available commodity hardware.

Static/Quasi-Static Channel Assignment in Multiradio Net-
works. There have been many works that circumvent fast channel
switching by assigning channels at a much larger time scale in
a multiradio setting. This solution is deemed more practical as
there is neither a need to modify the 802.11 protocol or need for
interfaces with very low channel switching latency.

In particular, [8] assume a tree-based communication pattern
to ease coordination for optimizing channel assignment. Similar
tree-based communication patterns have been used in [27]. The
above schemes do not quantify the performance of their solutions
with respect to the optimal. In addition, [11] considers minimum-
interference channel assignments that preservek-connectivity.
None of the above schemes preserve the original network topol-
ogy, and hence, may lead to inefficient assignments and routing
in a more general peer-to-peer communication.
Topology Preserving Schemes.To facilitate independent routing
protocols, our work focusses on developing quasi-static channel
assignment strategies that preserve the original network topology.
Prior works on topology preserving channel assignment strategies
are as follows. Adya et al. [10] propose a strategy wherein they
assume a hard-coded assignment of channels to interfaces, and
then determine which channel/interface to use for communication
via a measurement-based approach. They do not discuss how the
channels are assigned to interfaces. In [7], Raniwala et al.propose
a centralized load-aware channel assignment algorithm; however,
they require that source-destination pairs with associated traffic
demands and routing paths be known a priori. In [28], Das et al.
present a couple of optimization models for the static channel
assignment problem in a multi-radio mesh network. However,
they do not present any practical (polynomial time) algorithm.
In [29], the authors propose a linear optimization model that
assign channels to interfaces, and then, assign interfacesto neigh-
bors so that neighors having interfaces with common channels
can communicate. In contrast, in our model, we assign channels
to links directly. In [30], a purely measurement-based approach
is taken for channel assignment to radios (instead of links). Here,
one radio at each node is tuned to a common channel to preserve
the original topology; however, this can be wasteful when only
a few interfaces are available. Moreover, assignment of channels
to radios still leaves the problem of which channel to use fora
transmission/link.In [31], the authors propose a simple greedy
algorithm for channel assignment in multi-radio networks.They
assume a binary interference model and do not show any perfor-
mance bounds.In the most closely related work to ours, Marina
and Das in [9] address the channel assignment to communication
links in a network with multiple radios per node. They propose

a centralized heuristic for minimizing the network interference.
We compare the performance of our proposed algorithm with this
heuristic, and show a significant improvement.

Other Related Works. In other related works, [32] proposes a
hybrid channel assignment strategy: some interfaces on a node
have a fixed assignment, and the rest can switch channels as
needed. To put things in perspective, our work presents algorithms
for making these fixed assignments.Authors in [15], [16], [17],
[18] address joint channel assignment, routing, and scheduling
problems. These papers make an assumption of synchronized
time-slotted channel model as scheduling is integrated in their
methods. This makes modeling network throughput straightfor-
ward and consideration of a joint channel assignment and routing
problem practical. However, the synchronized time-slotted model
is hard to implement in commodity radios that use 802.11, as
in 802.11 scheduling is done following a CSMA-based random
access paradigm. In addition, these works often make impractical
assumptions. For example, [15]’s approach requires enumeration
of all maximal sets of non-interfering links (independent sets),
and [16] considers networks with bounded “interference degrees.”

In remaining related works, [33] derives upper bounds on
capacity of wireless multihop networks with multiple channels,
and [26] investigate granularity of channel assignment decisions
by assigning channels at the level of components (links, paths, or
general graph component) in single radio networks.

On the theoretical front, the related MaxK-cut problem has
been studied extensively. In particular, [14] gives a constant
approximation algorithm using semidefinite algorithm for general
graphs, while [34] consider uniformly randomGn,p graphs and
give an approximation scheme. As a hardness result, [35] proves
that unless P=NP, the MaxK-cut problem cannot be approxi-
mated within a factor of1 − 1

34K .

IV. CENTRALIZED TABU -BASED ALGORITHM

In this section, we describe one of our algorithms for the chan-
nel assignment problem, based on the Tabu search [13] technique
for coloring vertices in graphs.Our Tabu-based algorithm is cen-
tralized. Centralized algorithms are quite practical in “managed”
mesh networks where there is already a central entity. Moreover,
they are amenable to a higher degree of optimization, easierto
upgrade, and use of “thin” clients. Centralized approacheshave
indeed been proposed in various recent works [9], [7], [11],and
have also become prevalent in the industry (e.g., WLAN and mesh
products from Meru Networks [36], Tropos [37])

Algorithm Overview. Recall that our channel assignment prob-
lem is to color the verticesVc of the conflict graphGc usingK

colors while maintaining the interface constraint and minimizing
the number of monochromatic edges in the conflict graph. In
other words, the channel assignment problem is to find a so-
lution/function f : Vc → K with minimum network interference
I(f) such thatf satisfies the interference constraint. Our Tabu-
based algorithm consists of two phases. In the first phase, we
use Tabu search based technique [13] to find a good solutionf

without worrying about the interface constraint. In the second
phase, we remove interface constraint violations to get a feasible
channel assignment functionf .

First Phase. In the first phase, we start with a random initial
solution f0 wherein each vertex inVc is assigned to a random
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color in K. Starting from such a random solutionf0, we create
a sequence of solutionsf0, f1, f2, . . . , fj , . . . , in an attempt to
reach a solution with minimum network interference. In thejth

iteration (j ≥ 0) of this phase, we create the next solutionfj+1

in the sequence (fromfj) as follows.

The jth Iteration.Given a solutionfj , we createfj+1 as follows.
First, we generate a certain number (say,r) of random neigh-
boring solutions offj . A random neighboring solution offj is
generated by picking a random vertexu and reassigning it to a
random color in(K− {fj(u)}). Thus, a neighboring solution of
fj differs from fj in the color assignment of only one vertex.
Among the set of such randomly generated neighboring solutions
of fj , we pick the neighboring solution with the lowest network
interference as the next solutionfj+1. Note that we do not require
I(fj+1) to be less thanI(fj), so as to allow escaping from local
minima.

Tabu List.To achieve fast convergence, we avoid reassigning the
same color to a vertex more than once by maintaining atabu list
τ of limited size. In particular, iffj+1 was created fromfj by
assigning a new color to a vertexu, then we add(u, fj(u)) to the
tabu listτ . Now, when generating random neighboring solutions,
we ignore neighboring solutions that assign the colork to u if
(u, k) is in τ .

Termination.We keep track of the best (i.e., with lowest inter-
ference) solutionfbest seen so far by the algorithm. The first
phase terminates when maximum number (say,imax) of allowed
iterations have passed without any improvement inI(fbest). In
our simulations, we setimax to |Vc|. Since network interference
I(f) takes integral values and is at most(|Vc|)

2, the valueI(fbest)

is guaranteed to decrease by at least 1 inimax = |Vc| iterations
(or else, the first phase terminates). Thus, the time complexity of
the first phase is bounded byO(rd|Vc|

3), since each iteration can
be completed inO(rd) time wherer is the number of random
neighboring functions generated andd is the maximum degree of
a vertex in the conflict graph. Note that network interference of
a neighboring solution can be computed inO(d) time. A formal
description of the first phase is shown in Algorithm 1.

Algorithm 1: First Phase of Tabu-based Algorithm.
Input : Conflict GraphGc(Vc, Ec); Set of channelsK.
Output : Channel Assignment Functionfbest : Vc → K.

Start with a random assignment functionf0;
fbest = f0; Ibest = I(f0); τ = null; j = 0; i = 0;
while I(fi) > 0 and i ≤ imax do

Generater random neighbors offj ;
Each neighbor is generated by randomly picking
a u in Vc andk ∈ K s.t. k 6= fj(u) and (u, k) /∈ τ ,
and changingfj(u) to k

Let fj+1 be the neighbor with lowest interference.
Add (u, fj(u)) to τ .
If τ is full, delete its oldest entry;
if (I(fj+1) < Ibest)

then Ibest = I(fj+1); fbest = fj+1; i = 0;
elsei = i + 1;

endif;
j = j + 1;

end while
RETURN fbest;
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Fig. 2. Merge operation of second phase. The two figures are the commu-
nication graphs of the network before and after the merge operation. Labels
on the links denote the color/channel. Here, the merge operation is started at
nodei by changing all its 1-colored links to color 2.

Second Phase.Note that the solutionf returned by the first phase
may violate interface constraints. Thus, in the second phase, we
eliminate the interface constraints by repeated application of the
following “merge” procedure. Given a channel/color assignment
solution f , we pick a network node for the merge operation
as follows. Among all the network nodes wherein the interface
constraint is violated, i.e, whose number of radios is less than the
number of distinct colors assigned to the incident communication
links, we pick the node wherein the difference between the above
two terms is the maximum. Leti be the node picked as above for
the merge operation. We reduce the number of colors incidenton
i by picking (as described later) two colorsk1 andk2 incident on
i, and changing the color of allk1-colored links tok2. In order
to ensure that such a change does not create interface constraint
violations at other nodes, weiteratively“propagate” such a change
to all k1 − colored links that are “connected” to the links whose
color has been just changed fromk1 to k2. Here, two links are
said to be connected if they are incident on a common node.
Essentially the above propagation of color-change ensuresthat
for any nodej, eitherall or noneof thek1-colored links incident
on j are changed to colork2. See Figure 2. Completion of the
above described color-change propagation marks the completion
of one merge procedure. The above described merge procedure
reduce the number of distinct colors incident oni by one, and does
not increase the number of distinct colors incident on any other
node (due to the all or none property). Thus, repeated application
of such a merge operation is guaranteed to resolve all interface
constraints. Note that a merge operation probably will result in
increase in network interference. Thus, for a given nodei, we pick
those two colork1 andk2 for the merge operation that cause the
least increase in the network interference due to the complete
merge operation.

V. D ISTRIBUTED GREEDY ALGORITHM (DGA)

In this section, we describe our Distributed Greedy Algorithm
(DGA) for the channel assignment problem. Our choice of greedy
approach is motivated by the following two observations.

Max K-cut Problem in Random Graphs.As described before,
the Max K-cut problem on a given graphG is to partition the
vertices ofG into K disjoint subsets such that the sum of number
of edges with endpoints in different partitions is maximized.
In [34], the authors considerGn,p graphs which are defined as
random graph overn vertices where each edge exists with a
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uniform probability ofp. The authors design an algorithm with
an approximation ratio1− 1

Kx (wherex ≥ 1) for the MaxK-cut
problem in suchGn,p graphs. In particular, they obtain a lower
bound on the size of the MaxK-cut in Gn,p graphs problem
using a simple greedy heuristic, and obtain an upper bound using
a relaxed semidefinite program given by [14]. They show that
the lower and upper bounds are close with very high probability.
In effect, the authors show that the greedy heuristic delivers a
1− 1

Kx factor approximation solution with very high probability.
The greedy heuristic proposed in [34] for MaxK-cut works by
deciding the partition of one vertex at a time in a greedy manner
(i.e., place the vertex in the partition that results in maximizing
the number of edges with endpoints in different partitions).

Conflict Graph isGn,p. It can be shown that a network formed
by randomly placed nodes in a fixed region generates a random
conflict graph Gc which is also Gn,p. Here, we assume an
interference model wherein two communication links(u, v) and
(r, s) interfere with each other depending on the locations of the
nodesu, v, r, and s (as is the case with protocol interference
model [1]). Now, the verticeslu,v, lr,s ∈ Vc representing the
communication links(u, v) and(r, s) are connected inGc if and
only if the communication links(u, v) and (r, s) interfere with
each other. Thus, the probability of an edge between two vertices
of Vc depending only on the locations of the involved network
nodes, and since the network nodes are randomly placed, the
probability of an edge between two vertices inVc is uniform.

The above observations motivate use of a greedy approach for
our channel assignment problem.

Centralized Greedy Algorithm. We start with presenting the
centralized version, which yields a natural distributed implemen-
tation. In the initialization phase of our greedy approach,each
vertex of Vc is colored with the color1. Then, in each iteration
of the algorithm, we try to change the color of some vertex in
a greedy manner without violating the interface constraint. This
strategy is different from the Tabu-based algorithm, wherewe
resolve interface constraint violations in the second phase while
not worrying about introducing them in the first phase. In each
iteration of the greedy approach, we try to change the color of
some vertexu ∈ Vc to a colork. We look at all possible pairs of
u andk, considering only those that do not result in the violation
of any interface constraint, and pick the pair(u, k) that results
in the largest decrease in network interference. The algorithm
iterates over the above process, until there is no pair ofu andk

that decreases the network interference any further. Note that a
vertex inVc may be picked multiple times in different iterations.
However, we are guaranteed to terminate because each iteration
monotonically decreases the network interference. In particular,
as noted in previous section, since the network interference takes
integral values and is at most(|Vc|)

2, the number of iterations of
the greedy algorithm is bounded by(|Vc|)

2. Since each iteration
can be completed inO(dK|Vc|), whereK is the total number
of colors andd is the maximum degree of a vertex in the
conflict graph, the total time complexity of the greedy algorithm
is O(dK|Vc|

3). The pseudocode for the centralized verison of the
greedy algorithm is shown in Algorithm 2.

Distributed Greedy Algorithm (DGA). The above described
greedy approach can also be easily distributed by using a localized
greedy strategy. The distributed implementation differs from the
centralized implementation in the following aspects. Firstly, in

Algorithm 2: Centralized Greedy Algorithm.
Input : Conflict GraphGc(Vc, Ec); Set of channelsK.
Output : Channel Assignment Functionf : Vc → K.
Initialization:

f(u) = 1, ∀u ∈ Vc

Repeat
(1) Choose the pair(u, k) ∈ (Vc ×K), such that when

f(u) is assigned tok, the
interference constraint is not violated and the total

network interference (I(f))
decreases the most

(2) Setf(u) = k

Until I(f) cannot be decreased any further.

the distributed setting, multiple link-color pairs may be picked
simultaneously across the network by different nodes. Secondly,
the decision of which pair is picked is based on the local
information. Lastly, to guarantee termination in a distributed
setting, we impose additional restriction that each pair(u, k)

is picked at most once (i.e., each vertexu ∈ Vc is assigned
a particular colork at most once) in the entire duration of the
algorithm.

In the distributed implementation, each vertexu = lij ∈ Vc

corresponding to the link(i, j) is ownedby i or j, whichever
has the higher node ID. This is done to ensure consistency of
color information across the network. Initially, each vertex in Vc

is assumed to colored 1. Letm ≥ 1 be the parameter defining
the local neighborhood of a node. Based on the information
available about the colors of links in them-hop neighborhood
of i, each network nodei selects (after waiting for a certain
random delay) a(u, k) combination such that (i)u = lij is
owned by i, (ii) changing the color ofu to k does not violate
the interface constraint at nodei or j, (iii) the pair (u, k) has
not been selected before byi, and (iv) the pair(u, k) results in
the largest decrease in the “local” network interference. Then, the
nodei sends aColorRequest message to nodej. The nodej
responds with theColorReply message, if and only if changing
the color ofu to k still does not violate the interface constraint
at nodej. On responding with theColorReply message, the
nodej assumes2 that the color ofu has been changed tok. On
receiving theColorReply message forj, the nodei sends a
ColorUpdate(u, k) message to all itsm-hop neighbors. If
a ColorReply message is not received within a certain time
period, the nodei abandons the choice of(u, k) for now, and
starts a fresh iteration. Since each pair(u, k) is picked at most
once, then the total number of iterations (over all nodes) inthe
above algorithm is at mostO(|Vc|K). The pseudocode for the
distributed greedy algorithm that runs in every nodei ∈ V is
shown in Algorithm 3.

The above Distributed Greedy algorithm is localized, and can
be made to work in dynamic topologies. Our simulation results
showed that the above distributed algorithm performs almost
same as the centralized version, due to the localized natureof
the network interference objective function. The input network
parameters of traffic and interference are measured as discussed
in Section II.

2Such an assumption may need to be later corrected through communication
with i if the ColorUpdate(u,k) message is not received fromi within a
certain amount of time.
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Algorithm 3: Distributed Greedy Algorithm for each nodei ∈
V

Input : “Local” network and conflict graph; set of channels
K.

Output : Channel Assignment (i.e.,f(u)) for all links u ∈ Vc

incident on nodei.
Repeat

Among all pairs(u, k) whereu ∈ Vc is owned byi and
k ∈ K

that is not already chosen and does not violate
interface constraint ati

choose the one which produces largest decrease in
local interference.

SendColorRequest(u, k) to nodej where
u = (i, j).

Wait for ColorReply(u, k) message from nodej.
If ColorReply(u, k) message is not received within a

certain time
Abandon the choice(u, k).

Until Local interference cannot be decreased any further,
or all (u, k) combinations

have already been chosen.
When ColorRequest(u, k) message is received from
nodej, whereu = (i, j):

If assigning channelk to link u does not cause
interface constraint violation

SendColorReply(u, k) message to nodej.
When ColorReply(u, k) message is received from node
j:

Setf(u) = k and sendColorUpdate(u,k)
message to “local” neighborhood
When ColorUpdate(u, k) message is received:

Update locally maintained channel assignment of
links in the local network graph.

VI. B OUNDS ONOPTIMAL NETWORK INTERFERENCE

In this section, we derive lower bounds on the minimum
network interference using semidefinite and linear programming
approaches. These lower bounds will aid in understanding the
quality of the solutions obtained from the algorithms presented
in previous two sections.

A. Semidefinite Programming Formulation

In this section, we model our channel assignment problem in
terms of a semidefinite program (SDP).

Semidefinite Programs.A semidefinite program[38] is a tech-
nique to optimize a linear function of a symmetric positive-
semidefinite matrix3 subject to linear equality constraints.
Semidefinite programming is a special case of convex program-
ming [39], since a set of positive semidefinite matrices constitutes
a convex cone. Semidefinite programs can be solved in polyno-
mial time using various techniques [40]. The reader is referred
to [38], [41] for further details on semidefinite programming and
its application to combinatorial optimization. The standard form

3A matrix is said to bepositive semidefiniteif all its eigen values are
nonnegative.

of semidefinite program is as follows.

Minimize C.X

such that Ai.X = bi, 1 ≤ i ≤ m, and

X � 0

whereC, Ai (∀i), andX are all symmetricn×n matrices, andbi

is a scalar vector. The constraintX � 0 implies that the variable
(to be computed) matrixX must lie in the closed, convex cone of
a positive semidefinite matrix. Also, the. (dot) operation refers
to the standard inner product of two symmetric matrices.

As mentioned in Section II, our channel assignment problem is
essentially the MaxK-cut problem in the conflict graph with the
additional interface constraint. Below, we start with presenting
the SDP for the MaxK-cut problem from [14]. We then extend
it to our channel assignment problem by adding the interface
constraint.

SDP for Max K-cut. Let yu be a variable that represent the
color of a vertexu ∈ Vc. Instead of allowingyu to take 1 toK

integer values, we defineyu to be a vector in{a1, a2, ..., aK},
where theai vectors are defined as follows [14]. We take an
equilateral simplexΣK in RK−1 with verticesb1, b2, ..., bK . Let
cK =

(b1+b2+...+bK)
K be the centroid ofΣK , and letai = bi−cK

for 1 ≤ i ≤ K. Also, assume|ai| = 1 for 1 ≤ i ≤ K. Now, the
Max K-cut problem can be formulated as an integer quadratic
program as follows [14].
IPMax−K:

Maximize
K − 1

K

X

(u,v)∈Ec

(1 − yu.yv)

such that yu ∈ {a1, a2, ...., aK}

Note that sinceai.aj = −1
K−1 for i 6= j, we have:

1 − yu.yv =



0, if yu = yv
K

K−1 , if yu 6= yv.

Interface Constraint. We now add the interface constraint to the
above formulation for MaxK-cut. For eachi ∈ N , let

Φi = σ(E(i), Ri) − (

 

|E(i)|

2

!

− σ(E(i),Ri))/(K − 1),

whereσ(E(i),Ri) is as defined as follows:

σ(S,K) =
βα(α + 1) + (K − β)α(α − 1)

2
, (2)

where α = ⌊ |S|
K ⌋ and β = |S| mod K. It can be shown [42]

that the number of monochromatic edges in the clique of size|S|

when colored byK colors is at leastσ(S,K). Now, we add the
following constraint to represent the interface constraint.

X

u,v∈E(i)

yu.yv ≥ Φi ∀i ∈ N (3)

Recall that vertices inE(i) form a clique in the conflict graph,
and cannot be partitioned into more thanRi partitions to satisfy
our interface constraint. Now,σ(E(i), Ri)) gives a lower bound
on the number of monochromatic edges in this clique (E(i)) [42],
and thus,

`|E(i)|
2

´

−σ(E(i),Ri)) is an upper bound on the number
of non-monochromatic edges. Since we know thatyu.yv = 1 for



8

any monochromatic edge(u, v) and yu.yv = −1
K−1 for any non-

monochromatic edge, we have constraint in the above Equation 3.
Note that even though Equation 3 is a valid constraint, it does

not necessarily restrict the number of colors assigned to vertices
of E(i) to Ri. Thus, theIPMax−K augmented by the above
Equation 3 only gives an upper bound on the number of non-
monochromatic edges.

Relaxed SDP for Channel Assignment.Since we cannot solve
the integer quadratic programIPMax−K for problems of reason-
able size, we relax it by allowing the variablesyu to take any unit
vector in R|Vc|. Sinceyu.yv can now take any value between1
and −1, we add an additional constraint to restrictyu.yv to be
greater than −1

K−1 . The relaxed SDP for the channel assignment
is as follows.

Maximize
K − 1

K

X

(u,v)∈Ec

(1 − yu.yv)

such that

yu ∈ R|Vc| and |yu| = 1

yu.yv ≥
−1

K − 1
, ∀u 6= v, and

X

u,v∈E(i)

yu.yv ≥ Φi, ∀i ∈ N.

Standard SDP Formulation. Now, we convert the above relaxed
version into the standard SDP formulation. LetW be the|Vc| ×

|Vc| symmetric matrix representing the adjacency matrix of the
graphGc, and lete be the|Vc|×1 vector containing all 1’s. Now,
let L = d(W.e)−W denote the Laplacian of theW matrix, where
d(W.e) is the |Vc| × |Vc| matrix with W.e as the main diagonal.
Finally, let

C = −
L(K − 1)

2K
,

X be the semidefinite|Vc|×|Vc| matrix representingyu.yv for all
u, v ∈ Vc. Now, the semidefinite program for the channel assign-
ment problem in the standard SDP form (Matrix Notation) [34]
can be represented as follows.

Minimize C.X

such that

diagonal(X) = e

Xu,v ≥
−1

K − 1
, ∀u 6= v ∈ Vc,

Ai.X ≥ 2Φi, ∀i ∈ N, and

X � 0,

where eachAi(i ∈ V ) is a |Vc| × |Vc| matrix representingE(i).
In particular, theAi[u, v] = 1 if (u, v) ∈ Ei, and 0 otherwise.
Also, the inequalities in the above constraints can be converted
into equalities by subtracing linear positive variables from the left
hand side.

The solution to the above semidefinite program gives an upper
bounds on the number of non-monochromatic edges, and the
lower bound on the optimal network interference can be obtained
by subtracting it from|Ec|. This semidefinite program can solved
using standard SDP solver such as DSDP 5.0 [43].

B. Linear Programming Formulation

In our simulations, we observed that solving the semidefinite
program formulation presented in the previous section can take
a long time (12 hours on a 2.4 GHz Intel Xeon machine with
2GB RAM for a 50 node network) and memory, and hence, may
not be feasible for very large network sizes. Thus, in this section,
we formulate our channel assignment problem as an integer linear
program (ILP), and use the relaxed linear program with additional
constraints to estimate the lower bound on the optimal network
interference. The LP formulation can be solved in a much less
time (less than an hour vs. 12 hours) than the SDP formulation,
but yields a slightly looser lower bound than SDP on the optimal
network interference. Note that the SDP and LP formulationsare
used only to demonstrate the performance of our Tabu-based and
Greedy algorithms.

Integer Linear Programming. Recall that N is the set of
network nodes,Ri is the number of radio interfaces for a nodei,
K is the set of available channels, andGc(Vc, Ec) is the conflict
graph. Also,E(i) represents the set of vertices inVc that represent
the communication links incident on nodei ∈ N .

We use the following set of binary integer (taking values 0 or
1) variables and constraints in our ILP formulation.

• VariablesYuk, for eachu ∈ Vc and k ∈ K. The variable
Yuk is 1 if and only if the vertexu ∈ Vc is assigned the
channelk. Essentially, the variablesYuk define the channel
assignment function. Since, each vertex inVc is given exactly
one channel, we have the following constraints.

Yuk = {0, 1}, ∀u ∈ Vc, ∀k ∈ K (4)

X

k∈K

Yuk = 1, ∀u ∈ Vc (5)

• VariablesXuv , for each edge(u, v) ∈ Ec. The variableXuv

is 0 only if the verticesu, v ∈ Vc are assigned different
channels.4 The following equation defines the value ofXuv

in terms ofY variables.

Xuv = {0, 1}, ∀(u, v) ∈ Ec (6)

Xuv ≥ Yuk + Yvk − 1, ∀(u, v) ∈ Ec,∀k ∈ K (7)

The variablesXuv are used to define the network interfer-
ence (the objective function defined later).

• VariablesZik , for each network nodei ∈ N and channel
k ∈ K. The variableZik is 1 if and only if someu ∈ E(i)

has been assigned a channelk; note that,u represents a
communication link incident oni ∈ N .

Zik = {0, 1}, ∀i ∈ N, ∀k ∈ K (8)

Zik ≥ Yuk, ∀u ∈ E(i), ∀i ∈ N, ∀k ∈ K (9)

Zik ≤
X

u∈E(i)

Yuk, ∀i ∈ N, ∀k ∈ K (10)

The last equation above is used to enforce thatZik is 0 if
there is indeed no vertexu ∈ E(i) that has been assigned

4If vertices u and v in Vc are assigned same channel, thenXuv can be
0 or 1. However,Xuv will be chosen to be 0 to minimize the objective
function (see below), as there are no additional constraints involving Xuv .
The additional constraints in Equation 12 and 13 can be looked upon as
derivations of Equation 7.
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a channelk. The below equation enforces the interface
constraint usingZ variables.

k
X

f=1

Zif ≤ Ri ∀i ∈ N (11)

Objective Function. Our objective function for the above ILP is
to

Minimize
X

(u,v)∈Ec

Xuv .

Linear Programming. Due to NP-hardness of integer linear
programming, solving the above ILP is intractable for reasonably
sized problem instances. Thus, we relax the above ILP to a linear
program (LP) by relaxing the integrality constraints. In particular,
we replace the Equations 6, 4, and 8 by the following equation.

0 ≤ Xuv , Yuk, Zik ≤ 1.

The solution to the relaxed linear program gives only a lower
bound on the optimal solution to the ILP. Through simulations,
we have observed that the lower bound obtained by the above LP
formulation is very loose. Thus, in order to obtain a tighterlower
bound, we add additional constraints as follows.

Clique Constraint.For each vertexu ∈ Vc, let Su be the set
of vertices in a maximal clique containingu. As discussed in
Section VI-A, we can lower bound the number of monochromatic
edges in a complere graph of size|Su| when colored byK colors
asσ(Su, K) using Equation 2. The above observation yields the
following additional constraint.

X

v,w∈Su

Xvw ≥ σ(Su, K) ∀u ∈ Vc (12)

Since the set of verticesE(i) in Vc forms a clique inGc and uses
at mostRi colors (due to the interface constraint on nodei), we
also have the following constraint.

X

(u,v)∈E(i)

Xuv ≥ σ(E(i),Ri) ∀i ∈ N (13)

The above two additional constraints pose a lower bound on
the interference on clique like subgraphs. This helps to reduce the
gap between the actual integer optimum and the relaxed linear
solution.

Number of Variables and Constraints.The number of variables in
the above LP formulation is|Ec| + K(|Vc| + N), and the total
number of equations/constraints are2(|Vc| + |N |) + K(2|Vc| +

2|N | + |Ec|) including the integrality constraints. We solve the
linear program using GLPK [44], a public-domain MIP/LP solver.

VII. G ENERALIZATIONS

In the previous sections, for sake of clarity, we made various
assumptions, viz., uniform traffic on all communication links,
a binary interference model, and orthogonal channels. In this
section, we generalize our techniques to relax these assumptions.
These generalizations are quite useful in practical deployments.
For example, the links in the network communication graph may
carry different amounts of traffic. Thus, the average interference
must be weighted by traffic as interfering traffic is not the same
for all interfering link pairs. Also, channels – even when they are
orthogonal in theory – do interfere due to device imperfections

(e.g., radio leakage, improper shielding, etc.) [12]. Thus, modeling
of non-orthogonal (i.e., interfering) channels is a good idea. In
addition, this also allows us to explicitly utilize non-orthogonal
channels. Finally, regardless of traffic and use of different chan-
nels, path loss effects can influence the degree of interference
between two links – and thus, result in fractional interference
between two links.

Non-uniform Traffic and Fractional Interference. Let u and
v be two vertices in the conflict graph,r(u, v) (a real number
between 0 and 1) be the level of interference between two links
corresponding to the verticesu and v when both links carry
saturated traffic. The level of interferencer(u, v) between pairs of
links u andv can be computed using techniques similar to [21];
Section IX gives a detailed description of how it is computedin
our experimental study. Lett(u) and t(v) denote the normalized
traffic (with respect to saturated traffic) on the links corresponding
to the vertexu and v respectively. Note that in our network
model, we assume that the traffic is known a priori. Measurements
of these parameters was discussed in Section II. Based on the
above notations, the overall network interferenceI(f) for a given
channel assignment functionf : Vc → K can be defined as
follows. Let M = {(u, v)|u, v ∈ Vc and f(u) = f(v)}. Then,

I(f) =
X

(u,v)∈M

t(u)t(v)r(u, v).

Note thatt(u)t(v)r(u, v) is a reasonable way to model the level
of interference between the nodesu andv with given traffic loads,
sincer(u, v) is the level of intereference with saturated traffic and
t(u) and t(v), the respective traffic loads, are normalized with
respect to the saturated traffic.

For the generalized interference and traffic model, the Tabu-
based and Greedy algorithms use the above definition of network
interference; no additional changes are required. Similarly, the LP
and SDP formulations of the channel assignment problem can be
generalized by appropriately extending the objective function; no
other changes are required in the list of variables and constraint
equations.

Non-orthogonal Channels. Let c(k1, k2), a value between 0
and 1, denote the level of interference between two channels
k1 and k2. For non-orthogonal channels, the overall network
interference can be further generalized as follows for a given
channel assignment functionf : Vc → K.

I(f) =
X

(u,v)∈Ec

t(u)t(v)r(u, v)c(f(u), f(v)).

As before, Tabu-based and Greedy algorithms can use the
above definition of network interference without any additional
changes. However, in the LP formulation, we need to replace the
Equations 7 by the following.

Xuv ≥ Yuk1
+ Yvk2

− 2 + c(k1, k2), ∀(u, v) ∈ Ec,∀k1, k2 ∈ K

Unfortunately, the SDP formulation cannot be generalized eas-
ily for non-orthogonal channels. The problem arises from the
difficulty in choosing appropriate vectorsai such thatai.aj is
proportional toc(i, j) for all channelsi, j ∈ K. The valuesc(i, j)
are characteristics of the channel spectrum, and can be measured
independently.
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VIII. S IMULATION RESULTS

In this section, we study the performance of our designed
algorithms for the channel assignment problem through extensive
simulations. The main goal of the simulation based evaluation
is to understand the performance of our algorithms in large-
scale network scenarios. In Section IX, we will present detailed
experimental evaluation of our algorithms on a 11-node multi-
radio mesh testbed. We present our performance results for two
different settings. First, we evaluate a graph-theoretic performance
metric, and then, evaluate throughput improvement using ns2
simulations. We start with discussing various algorithms used for
comparison.

Algorithms. In addition to our designed algorithms (Tabu-based
and Distributed Greedy) and the lower bounds obtained from the
linear and semidefinite programming techniques, we also present
results for two other algorithms for comparison. In particular, we
simulate a modified version of the centralized CLICA heuristic
presented in [9] for a slightly different version of the channel
assignment problem.5 We refer to the modified algorithm of [9]
as CLICA-SCE. We also simulate arandomalgorithm which uses
only a limited number of channels (equal to the number of radio
interfaces), assigns a different channel to each radio interface,
and then, selects a random interface (and hence, channel) for
transmitting a packet. See Section III for a discussion on other
related works.

We note here the network interference metric is actually a
localized metric since a communication link interferes with only
“neighboring” communication links. Thus, we observed thatthe
centralized version of the greedy algorithm performed almost
exactly the same as the Distributed Greedy algorithm.

A. Graph-Theoretic Performance Metric

In this set of experiments, we generate random networks by ran-
domly placing a number of nodes in a fixed region, and evaluate
various algorithms based on a certain graph-theoretic performance
metric. To solve linear programs, we used GLPK [44] which
is a public-domain MIP/LP solver, while to solve semidefinite
programs, we used DSDP 5.0 [43] [45] which uses an efficient
interior-point technique.

Graph Parameters. We consider two sets of random network,
viz., dense and sparse networks, generated by randomly placing
50 nodes in500 × 500 and 800 × 800 square meters of area
respectively.6 In dense networks, the average node degree is
around 10, while in sparse networks the average node degree is
around 5. Each node has the same number of radio interfaces, and
has a uniform transmission and interference range of 150 meters.
Two nodes are connected by a communication link if they lie
within each other’stransmission range. Also, two communication
links (i, j) and(g, h) interfere with each other if and only if either
g or h lies within the interference rangeof i or j; this is based
on the protocol interference model [1]. We assume orthogonal
channels and uniform traffic on all links.

5In CLICA [9], a communication link may multiplex between multiple
channels, but in our network model each communication link uses exactly
one channel for transmission. We modify CLICA to use our network model.

6We evaluated networks of size up to 750 nodes and varying densities,
with similar performance results for all algorithms. However, the LP and SDP
formulations for networks of size larger than 50 nodes took unreasonably long
computation time.

Performance Metric. We evaluate the performance of our algo-
rithms in random networks using the metric “fractional network
interference.” Given a channel assignment functionf computed
by an algorithm, thefractional network interferenceis defined
as the ratio of network interference(I(f)) and the total number
of edges in the conflict graph. This represents the number of
conflicts that remain even after channel assignment relative to the
number of conflicts in the single-channel network. The fractional
network interference for the random algorithm is given by1

R ,
where R is the number of radios on each node. Note that the
above performance metric is purely graph-theoretic and hence,
we do not use any network simulator for these experiments.

Results.In Figure 3, we plot the fractional network interference
for varying number of radio interfaces/node, in dense and sparse
networks using 3 and 12 channels. In general, both our algorithms
perform extremely well compared to the CLICA-SCE and random
algorithms. The Tabu-based algorithm almost always performs
better that than the Distributed Greedy algorithm, except when
the number of radios is very small. When the number of radios is
very small, the second phase of Tabu-based algorithm is forced
to perform many inefficient merge operations which leads to
performance degradation.

The performance of our algorithms compared to the lower
bounds obtained from the LP and SDP formulations shows that
our algorithms deliver very good solutions, particularly for larger
number of radios. Note that the vertical axis of the plots is
presented in log-scale for ease of viewing. The performance
difference between the Tabu-based algorithm and the SDP lower
bound is about 1% to 4% when the number of radios is large.
We can also see that the SDP formulation delivers a much better
lower bound than the LP formulation, for all parameter values.
However, as we noted before, running SDP is significantly more
computationally expensive (in terms of time and memory) than
LP.

The comparison of plots for dense and sparse networks bring
out interesting features. The fractional interference reduces with
increase in number of radios per node; however, this trend
saturates beyond a certain number of radios. This saturation point
is reached with smaller number of radios for sparse networks
than for dense networks, for the same number of channels. This
is because the denser networks can potentially support more
concurrent transmissions than the sparse networks. Similar trends
were observed in [9].

B. ns2 Simulations

In this set of experiments, we study the impact of channel
assignment in improving throughput in an 802.11-based mesh
network. We compare the performance of various algorithms by
measuring thesaturation throughputusing ns2 simulations over
randomly generated networks. We consider networks of 50 nodes
randomly placed in a1000×1000 square meters area. The transmit
power, receive and carrier sense thresholds in the default setting
of ns2 are such that the transmission range is 250 meters and the
interference range is 550 meters. We used the same default radio
parameters as in ns2 [46], except that we set the channel datarate
to 24Mbps. All transmissions are unicast transmissions following
the 802.11 MAC protocol with RTS/CTS, and the packet size is
fixed to 1000 bytes.
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Fig. 3. Fractional network interference of solutions delivered byvarious algorithms compared with the lower bounds in dense or sparse
networks for 3 or 12 channels.
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Fig. 4. Saturation throughput in ns2 simulations for 12 channels and various traffic models, viz., (a) Single hop, (b) Multi-hop Peer-to-Peer, (c) Multi-hop
Gateway.

Performance for Various Traffic Models. We use three different
traffic models.

• Single-hop traffic model: This model consists of identical
poisson traffic for each communication link. The single-hop
traffic model is useful to evaluate the performance in the
case when all links in the network carry the same load.

• Multi-hop peer-to-peer traffic model: In this model, 25 ran-
domly selected source-destination pairs communicate using
multihop routes. The routes are computed statically using the
shortest number of hops as the metric, and do not change
for the lifetime of the simulation.

• Multi-hop gateway traffic model: In this model, 4 random
nodes are selected as gateways, and 25 source nodes send
traffic to their nearest (in terms of hops) gateway. Routes are
determined as in the previous traffic model. Such a traffic
model will be common when the mesh network is used for
Internet gateway connectivity.

Note that in the last two traffic models the traffic on the links
is non-uniform. The traffic information is used in the channel
assignment algorithms as suggested in Section VII.

Figure 4 plotssaturation throughputagainst number of radio
interfaces per node for the three traffic models and 12 channels

(as we are experimenting with an 802.11a like system). We obtain
the saturation throughputs as follows. For a particular number of
radios and channels, we run a series of simulations, increasing
the offered load each time, starting from a low value. We stop
when the throughput does not increase any further with increase
in the offered load.

We note that in all the three traffic models, our algorithms
perform very well. We also see that the observations we made
from the earlier graph-theoretic evaluations translate well into
the ns2 results. The saturation throughput remain same after
a certain number of radios, as inferred in the graph-theoretic
simulations. Also, the relative performance of the algorithms in
the ns2 simulations is the same as observed in the graph-theoretic
simulations. This indirectly establishes the merit of the chosen
interference model, optimization objective, and use of graph-
theoretic measures as a method of performance evaluation.

Modeling Non-Orthogonal Channels. So far, we have used
only perfectly orthogonal channels. This however is a limitation
in systems such as 802.11b where few orthogonal channels are
available. Since our techniques are general enough to handle
non-orthogonal channels (Section VII), we now model a non-
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Fig. 5. Saturation throughput in ns2 simulations when using non-
orthogonal channels with 802.11b-like multi-channel model (11 chan-
nels with varying degrees of interference; 3 channels are mutually
orthogonal).

orthogonal channel situation.
We assume an 802.11b like system where there are 11 channels,

with only 3 of them being mutually orthogonal. For modeling
the interference between non-orthogonal channels, we follow the
technique outlined in Section VII. We use the data from [47] to
model the “weighted” nature of conflicts. This data is obtained
based on a simple analysis of the amount of overlapped spectrum
between every pair of channels in 802.11b. We also did direct
measurements on an 802.11b testbed to estimate interference
between non-orthogonal channels and the values we obtainedare
similar to those quoted in [47]. Since such measurements canbe
very much hardware and environment specific, we stick to the
data in [47].

In the ns2 simulator, we model inter-channel interference as
follows. Physical layer frames transmitted on channelk1 arriving
at a radio interface tuned to channelk2 are reduced in power
depending on the degree of non-interference. For example, if a
k1-frame arrives at ak1-interface, the frame does not undergo
any power reduction. On the other hand, if ak1-frame arrives
at ak2-interface, wherek1 andk2 are perfectly orthogonal, then
thek1-frame is completely silenced. Power reduction between 0%
and 100% occur for other intermediate cases. In the simulator, the
interference (e.g., carrier-sense or collisions) is calculated only
after such power reduction.

We use the peer-to-peer multihop traffic model (as defined
before) to show the performance of our algorithms with non-
orthogonal channels. See Figure 5. We observe that both our al-
gorithms perform better when using all available 11 channels than
when using only the 3 mutually orthogonal channels. The factor
of improvement is less in the Tabu-based algorithm compared
to the Distributed Greedy algorithm due to the inefficiency of
the merge operations. Overall, use of non-orthogonal channels
is a better choice than restricting channel assignments to only
orthogonal channels.

IX. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of our
channel assignment algorithms compared to the random channel
assignment algorithm and CLICA-SCE algorithm. We start by
describing our testbed and then discuss about generating the con-
flict graph for a given topology of mesh nodes. We then describe
the channel assignment procedure and present the performance
results.

A. Testbed

The mesh testbed used in our experiments is an indoor wireless
testbed that consists of 11 nodes each of which is a Soekris [48]
net4801 embedded computer running Pebble Linux [49] with the
Linux 2.4.31 kernel. The PCI-slot in the embedded computer
is expanded into 4 mini-PCI slots using RouterBoard 14 [50]
which allows us for using 4 mini-PCI wireless cards. We use
three 802.11 a/b/g mini-PCI wireless cards based on Atheros[51]
chipset with external antennas in each mesh node. We use the
latest madwifi [52] driver for the 802.11 interfaces. In our
experiments, we configured the 802.11 interfaces in 802.11amode
as there are twelve orthogonal channels and the communication
range of each wireless node is less compared to 802.11b/g modes
so that we could get different multi-hop topologies within indoors.
Due to board crosstalk or radio leakage [10], [12] there is
interference between the radios in the same node even when they
are configured to separate orthogonal channels. In order to over
come this, we separated the three external antennas at a distance
of about 1.5 feet based on measurements similar to [12]. Withthis
setup, we could use 7 (channels 36, 44, 52, 60, 149, 157, 165)
out of the 12 orthogonal channels in each mesh node without
interference between different radios on the same node.

B. Generating communication graph and conflict graph

The nodes in our mesh tesbed are static and in order to generate
different topologies, we used different transmit powers. In the
experiments reported in this paper, we have used two different
transmit powers (11dBm and 15dBm) to generate one sparse and
one dense topology. The first step in our experimental procedure
is to generate the communication graph for a given configuration
of nodes. The communication graph is generated by allowing each
node to transmit broadcast packets one after another and allother
nodes measuring the delivery ratio and througput. This takes about
O(n) time, wheren is the number of nodes in the network. In our
study, we repeat the above procedure multiple times and choose
links with delivery ratio more than80% as the stable links in
the network and use only these links. The reason behind this
is that the links that have poor delivery ratio are very unstable
making it harder to get good statistical confidence in the results
with runs of reasonable lengths. Also, the number of stable links
is much less compared to the total number of possible links in
the network. This also reduces the time to compute the conflicts
between link pairs. Among the 7 orthogonal channels, channels
149, 157, 165 are in the upper band of the 5GHz spectrum and the
link characteristics using these channels are significantly different
from the rest of the 4 channels we considered in the lower
and middle band. Since all the channel assignment algorithms
considered for the study here assume that all channels to be alike,
we had to restrict our study to the 4 channels only (i.e, channels
– 36, 44, 52, 60).

Once the links in the communication graph are decided, we
schedule pairs of links simultaneously and measure the throughput
on each link in the presence of transmission on the other link. If
there arem stable links in the network, this measurement takes
O(m2) time to complete. The conflict graph is then computed
using the method used in [21]. The whole process of generating
the conflict graph is automated and the conflict graph is fed as
input to the channel assignment algorithms.
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Fig. 6. Aggregate network throughput in the network when transmit power of each node is set to 11dBm (a) Two radio case (b) Three radio case.
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Fig. 7. Aggregate network throughput in the network when transmit power of each node is set to 15dBm (a) Two radio case (b) Three radio case.

C. Performance Results

In our performance study, we use saturated load on all stable
links as determined while generating the communication graph
for each transmit powers simultaneously. Each experiment is
repeated 10 times and the average value is reported. Figure 6
and 7 show the aggregate throughput in the network when using
channel assignments from our Tabu-based and Greedy algorithm7

compared to the random channel assignment and CLICA-SCE
algorithms for two different topologies (sparse topology using
11dBm transmit power in all node and dense topology using
15dBm transmit power in all nodes). We also show the aggregate
network throughput when using the same channel in all links.
This serves as a base case.

For the sparse topology, Figure 6(a) shows the case when each
node uses two radios and Figure 6(b) shows the case when each
node uses three radios. We see the Tabu-based algorithm perform
extremely well compared the other algorithms in both the cases.
There is a notable difference in aggregate throughput when using
4 channels in this topology using our Tabu-based algorithm.This
is because the level of interference resulting from the channel
assignment when using 4 channels is much less compared to
when using 2 or 3 channels. The performance of the Greedy
algorithm is not significantly better when compared to the random
and CLICA-SCE algorithms . In the dense topology, both our
algorithms perform well and there is a notable increase in the
aggregate throughput when using 3 channels compared to using
2 channels due to higher reduction in level of interference.Beyond
3 channels, the improvement is negligible. The improvementin
aggregate throughput when using more number of channels and
interfaces is largely dependent on the actual topology and the way
links interfere in the network. Compared to the single channel

7In order to make the experimental procedure simple, we considered a
centralized version of our greedy algorithm. As noted in Section VIII, the
performance of both versions are similar.

case, there is a significant increase in aggregate throughput in
the network. This shows the effectiveness of using good channel
assignment algorithms.

X. CONCLUSION

In this paper, we have formulated and addressed the channel
assignment problem in multichannel wireless mesh networks
where each node may be equipped with multiple radios. We
have presented centralized and distributed algorithms that assign
channels to communication links in the network with the objective
of minimizing network interference. Using linear programming
and semidefinite programming formulations of our optimization
problem, we obtain tight lower bounds on the optimal network
interference, and empirically demonstrate the goodness ofthe
quality of solutions delivered by our algorithms. Using simu-
lations on ns2 and detailed experimental study on a 11-node
multi-radio mesh testbed, we observe the effectiveness of our
approaches in improving the network throughput. One of the
future directions is to consider assignment of multiple channels
to each link.
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