Minimum Interference Channel Assignment in
Multi-Radio Wireless Mesh Networks

Anand Prabhu Subramanian, Himanshu Gupta, Samir R. DasiagdCao

Abstract— In this paper, we consider multi-hop wireless mesh
networks, where each router node is equipped with multiple adio
interfaces and multiple channels are available for commurdation.
We address the problem of assigning channels to communicati
links in the network with the objective of minimizing overall
network interference. Since the number of radios on any node

can be less than the number of available channels, the channe

assignment must obey the constraint that the number of diffeent
channels assigned to the links incident on any node is atmogte
number of radio interfaces on that node. The above optimizabn
problem is known to be NP-hard.

We design centralized and distributed algorithms for the alove
channel assignment problem. To evaluate the quality of the
solutions obtained by our algorithms, we develop a semidefite
program and a linear program formulation of our optimizatio n
problem to obtain lower bounds on overall network interference.
Empirical evaluations on randomly generated network grapts
show that our algorithms perform close to the above establlsed
lower bounds, with the difference diminishing rapidly with
increase in number of radios. Also,ns-2 simulations as well as
experimental studies on testbeddemonstrate the performance
potential of our channel assignment algorithms in 802.11-#sed
multi-radio mesh networks.

Index Terms— Multi-Radio Wireless Mesh Networks, Channel
Assignment, Graph Coloring, Interference, Mathematical Ro-
gramming.

. INTRODUCTION

fast time scale (per packet or a handful of packets). The fast
channel switching requirement makes these approachegabisu

for use with commodity hardware, where channel switching
delays itself can be in the order of milliseconds [6] whichais
order of magnitude higher than typical packet transmistioes

(in microseconds). Some of the dynamic channel assignment
approaches also require specialized MAC protocols or sidan

of 802.11 MAC layer, making them further unsuitable for use
with commodity 802.11 hardware.

Static or Quasi-static Channel AssignmeDtie to the difficulty

of use of above dynamic approach with commodity hardware,
there is need to develop techniques that assign channétzalya

[71, [8], [9], [10], [11]. Such static assignments can be rajed
whenever there are significant changes to traffic load or orétw
topology; however, such changes are infrequent enoughttibat
channel-switching delay and traffic measurement (see @eb)i
overheads are inconsequential. We refer to the abovguasi-
static channel assignmenttf there is only one radio interface
per router, then the above channel assignment schemesawdl h
to assign thesamechannel to all radios/links in the network to
preserve network connectivity. Thus, such assignmentnsebe
require use of multiple radio interfaces at each node. Dir#&wd
crosstalk or radio leakage [10], [12], commodity radios amode
may actually interfere even if they are tuned to differerdrafels.
However, this phenomena can be addressed by providing some
amount of shielding or antenna separation [12], or increéase

There is an increasing interest in using wireless mesh nisvochannel separation (as is the case in 802.11a) [8].
as broadband backbone networks to provide ubiquitous metwgroblem Addressed.In our article, we address the problem of

connectivity in enterprises, campuses, and in metropoktaeas.
An important design goal for wireless mesh networksapacity
It is well-known that wireless interference severely lsnietwork

quasi-static assignment of channels to links in the contéxt
networks with multi-radio nodes. The objective of the chelras-
signment is to minimize the overall network interferencha@nel

capacity in multi-hop settings [1]. One common techniquedus assignment is done as some variation of a graph coloringgmb

to improve overall network capacity is use of multiple chelsn

but it has an interesting twist in the context of mesh netwofthe

Essentially, wireless interference can be minimized byngisi assignment of channels to links must obeyititerface constraint

orthogonal (non-interfering) channels for neighboringreigss

that the number of different channels assigned to the lingisient

transmissions. The current IEEE 802.11 standard for WLANsh a node is at most the number of interfaces on that nodeeDiff

(also used for mesh networks) indeed provides several gwtiad
channels to facilitate the above. Presence of multiple mélan

ent variations of this problem have been shown to be NP-hgrd [
[9] before. Thus, efficient algorithms that run reasonahlst and

requires us to address the problem of which channel to use fgbvide good quality solutions are of interest. Since coiimgu

a particular transmission; the overall objective of suctaasign-
ment strategy is to minimize the overall network interfexn

the optimal is intractable and approximation algorithme still
an open question, we take the approach of computitgpund

Dynamic Channel AssignmenOne of the channel assignmenton the optimalsing mathematical programming approaches, and
approaches is to frequently change the channel on the intdfvelop heuristics that perform very close to the obtaireshbs

face; for instance, for each packet transmission based en

g the optimal.

current state of the medium. Sudynamic channel assignmentoyr Contributions. For the above described channel assignment

approaches [2], [3], [4], [5] require channel switching atexy
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problem, we develop a centralized and a distributed algorit
The centralized algorithm is based on a popular heuristiccse
technique called Tabu search [13] that has been used in shénpa
graph coloring problems. The distributed approach is rateit
by the greedy approximation algorithm for Max-cut problem



in graphs [14]. To evaluate their performances, we develop AB BC
two mathematical programming formulations, using semndtefi I
programming (SDP) and integer linear programming (ILP). We

obtain boundson the optimal solution by relaxing the ILP and

SDP formulations to run in polynomial tim&inally, detailed ns-

2 simulations as well as experimental study in a 11-nodeimult —
radio testbed demonstrate the full performance potenfighe | I

channel assignment algorithms in 802.11 based multi-radieh GO 0O 06 ‘o DE
networks. (a) Communication graph (b) Conflict graph

The salient features of our workhat set us apart from the
existing channel assignment approaches on multi-raditfoplas  Fig. 1. Communication graph and corresponding conflict graph.
are as follows.

o Our approach is “topology preserving,” i.e., all links that S _ o
can exist in a Single channel network also exist in th@)mmur“ca“on links in the network. Two |nterfer|ng linkarmot

multichannel network after channel assignment. Thus, ofiRgage in successful transmission at the same time if taagrtit
channel assignment does not have any impact on routing®n the same channel. Theterference modetiefines the set of

« Our approach is suitable for use with commodity 802.11inks that can interfere with any given link in the networkhére
based networks without any specific systems support. \Wave been various interference models proposed in thetlibe,
do not require fast channel switching or any form of MACOr example, the physical and protocol interference moglis
layer or scheduling support. While our algorithms indeeel ug1>]- The discussion in this paper is independent of theifpec
interference and traffic models as input, such models can ibéerference model used as long as the interference model is
gathered using experimental methods. defined on pairs of communication links.

« Our work generalizes to non-orthogonal channels, inciydin For clarity of presentation, we assumebmary interference
channels that are supposedly orthogonal but interfereusecamodel for now (i.e., two links either interfere or do not inter-
of crosstalk or leakage [12]. fere), and generalize our techniques to fractional interfee in

« Ours is the first work that establishes good lower boundaection VII. Moreover, in our approach of quasi-static af&n
on the optimal network interference, and demonstrates godgsignment, the level of interference between two linksialyt

performance of the developed heuristics by comparing thedgpends on the traffic on the links. However, for clarity of
with the lower bounds. presentation, we assume uniform traffic on all links for nawn

generalize our technigues to non-uniform traffic in Sectth

Fc’i\lper Ovr\?anltzattlon;thﬂ:je restt)_ of ttrf:e patf):r kls orgalnlzeg t‘f;‘]t':?onflict Graph.Given an interference model, the set of pairs of
oflows. Ve start wi escribing the network modet an Eommunication links that interfere with each other (assgmi
formulation of our problem in Section II, and discuss rqﬂats}hem to be on the same channel) can be represented using a
work in Section lll. We present our algorithms in Section | conflict graph[15]. To define a conflict graph, we first create

and Section V res_pectwely. In _Secﬂon Vi, we obtam_ '°V_Ve set of verticed/. corresponding to the communication links in
bounds on the optimal network interference using semuleﬁnme network. In particular

and linear programming. Section VIl presents generabpatiof
our techniques. We present simulation and experimentailtses Ve = {lij | (4,7) is a communication link}.

in Sections VIII and IX, respectively.
Now, the conflict graphG.(Ve, E.) is defined over the set.

as vertices, and aonflict edge(l;;,1,,) in the conflict graph
. . , is used to signify that the communication links j) and (a,b)
In this section, we first present our network model and formli'ﬁterfere with each other if they are on the same channel. The

late of our channel assignment problem. above concept of a conflict graph can be used to represent any

Network Model. We consider a wireless mesh network witinterference model. As defined above, the conflict graph does
stationary wireless routers where each router is equippitdl wchange with the assignment of channels to vertices in thilicion
a certain (not necessarily same) number of radio interfagés graph.

model the communication graplof the network as a general We illustrate the concept of conflict graph in Figure 1. The
undirected graph over the set of network nodes (routers). Avireless network represented in Figure 1 has five networlesiod
edge (4,7) in the communication graph is referred to as al,B,...,E and four communication links as shown in the
communication linkor link, and signifies that the nodesand communication graph (see Figure 1(a)). The conflict grajge (s
j can communicate with each other as long as both the noddgure 1(b)) has four nodes each representing a commuoicati
have a radio interface each with a common channel. There aring in the network. In this figure, we assume an 802.11 like
certain number of channels available in the network. Faitglaf  interference model where the transmission range and éneste
presentation, we assume for now that the channels are oriabg range are equal. When RTS/CTS control messages are used link
(non-interfering), and extend our techniques for nonagtmal within two hops interfere. Thus, the communication liok, B)
channels in Section VII. interferes with the communication links3, C') and (C, D), and

) not with (D, E).
Interference Model. Due to the broadcast nature of the wireless

links, transmission along a communication link (betweenaa p Notations. Here, we introduce some notations that we use
of wireless nodes) may interfere with transmissions alotigro throughout this paper.

Il. PROBLEM FORMULATION



o N, the set of nodes in the network. Network Interferencd (f).
o R;, the number of radio interfaces on node N.

o K =1{1,2,...,K}, the set ofK channels. I(f) = H(u,v) € Ee | f(u) = f(0)}]- @)
o Vo= {li | (i,j) is a communication link}. If we look at assignment of channels to vertices as coloring
o Go(Ve, Ec), the conflict graph of the network. of vertices, then the network interference is just the nunufe

o« Forie N, E(i) = {lij € Vc}, i.e., E(i) is set of vertices in monochromatic edges in the vertex-colored conflict grage T
Ve that represent the communication links incident on nodghannel assignment problem is NP-hard since it reduces to Ma
(2 K-cut (as discussed below).

In addition, throughout this paper, we use variahles to refer . i
to vertices inV,, variablesi, j, a,b to refer to nodes inv, and Input Parameters — Measuring Interference and Traffic. Note

the variablek to refer to a channel. Since assigning channel czmat’ _under the simplying ass_umptlon of unlfor_m traffic, the
be thought of as coloring vertices, we use the terms chamuel apnly _mput to our chann_el assignment pro_blem is the net_vvork
colors interchangeably throughout our paper. conflict graph._ The conflict graph (al_ong with the edge weight

_ ~ for fractional interference; see Section VII) can be coredut
Channel Assignment Problem.The problem of channel assign-ysing methods similar to recently reported measuremeseeha
ment in a multi-radio wireless mesh network can be inforalliechniques in [21], [20]. These techniques are localizes; t
described as follows. Given a mesh network of router nodés wihe localized nature of interference, and hence, can béyeasi
multiple radio interfaces, we wish to assign a unique chtine jy g distributed manner. Also, in most cases (for static netw
each communication I|r+k|n the network such that the numbertopc)'ogies), the above measurements need to be done on,ly one
of different channels assigned to the links incident on aoglen time, For the case of non-uniform traffic, we need to measure
is at most the number of radios on that node. Since we assugjRrage (over the time scale of channel assignment) traféic (
uniform traffic on all links for now, we assign channels to alfhe function ¢(.) of Section VII) on each link. Such traffic

|II’lkS, and define thdotal network interferences the number measurements can be easily done using existing softwale too
of pairs of communication links that are interfering (i.ere (e g., COMO [22]).

assigned the same channel and are connected by an edge in the
conflict graph). The objective of our problem is to minimizeet Relationship with Max K-cut. Given a graphG, the Max
above defined total network interferenas, it results in improving -cut problem [14] is to partition the vertices f into K
overall network capacity [1] partitions in order to maximize the number of edges whose
A note is in order regarding our choice of optimization objecendpoints lie indifferent partitions. In our channel assignment
tive. While a natural objective for the channel assignmeoblem Problem, if we view vertices of the conflict graph assignedato
would be to directly maximize overall network throughput, iParticular channel as belonging to one partition, then ttevark
turns out that mode”ng network throughput ana|ytica||y an interference is aCtUa”y the number of edges in the conflict
random access based medium access model is hard. The grevis@Ph that have endpoints samepartition. Thus, our channel
works in the literature ([15], [16], [17], [18]) that maxime assignment problem is basically the Mdk-cut problem with
overall network throughput assume a time-slotted syndheoh the added interface constraint. Since M&xcut is known to be
medium access model with scheduling as one part of the probldNP-hard, our channel assignment problem is also NP-hard.
In a time-slotted synchronized medium access model, mugleli
throughput is much easier relative to a CSMA based random I1l. RELATED WORK

access model. There indeed has been several attempts i recerpe se of multiple channels to increase capacity in a mul-

literature to model link capacity [19], [20] in a CSMA basedioy network has been addressed extensively. Generhbye t
network using measurements from real 802.11-based nesworK, e peen two types of approaches, viz., (i) Fast switching o

However, these models are quite complex and it is difficulise  .,5qnels (possibly, on a per-packet basis) on a single radio

them as objective functions for an optimization problem ahthe (i) Assigning channels to radios for an extended periodimkt
same time develop efficient solution approaches. In our wauk " 5 multi-radio setting.

interest is in developing solutions for use with commoditgtems

based on 802.11. Thus, in our channel assignment problem kast Switching of ChannelsIn MMAC protocol [3], the authors

use an objective function than can be formally defined usirgigment the 802.11 MAC protocol such that the nodes meet at a

the conflict graph model and optimized efficiently. With thi¢ommon channel periodically to negotiate the channels ¢dfars

argument, network interference is a more practical chaitative transmission in the next phase. In SSCH [4], the authorsgs®p

to network throughput. dynamic switching of channels using pseudo-random se@senc
Consider a wireless mesh network over a setof network The idea is to randomly switch channels such that the neigidpo

nodes. Formally, thehannel assignment probleis to compute nodes meet periodically at a common channel to communibrate.

a function f : V. — K to minimize theoverall network inter- DCA [2], the authors use two radios - one for the control p&ke

ferencel(f) defined below while satisfying the belointerface (RTS/CTS packets) and another for data packets. The chémnel

constraint send the data packet is negotiated using the control paekets
Interface Constraint. the data packets are sent in Fhe negotiated channels. In A{BﬂCP
the authors uses similar notion of a control channel, bunglsi
Vie N, [{k | f(e) =k for some e € E(i)}| < R;. radio and focus on starvation mitigation. In [23] the authase

INote that merely assigning channels to radios is not sufiidie measure a channel assignment approach using a routing pr_otoc_:ol t
network interference/capacity, since a link still can use of many channels Us€ these channels to transmit _data- FF)I’ coord_lnatlon_,raiont
for transmission. channels are used. In [24] two radio and single radio muticiel



protocols are proposed, but separate control channels @re a centralized heuristic for minimizing the network inteefiece.
needed. We compare the performance of our proposed algorithm with th
All the above protocols require a small channel switchinigyle heuristic, and show a significant improvement.
(of the order of hundred microseconds or less), since clisuane
switched at a fast time scale (possibly, on a per-packeshait,
the commodity 802.11 wireless cards incur a a channel sinigch
delay of the order of milliseconds (based on our observajjcas > , . ,
channel switching requires a firmware reset and executicanof needed.. To put thmgs In perspectlve, our wqu presentsidigus
associated procedure. Similar experiences were repartégl.i, for making th(_es_e fixed asygnm_entmjthors |n_[15], [16], [17],
and in particular, it has been shown in [4], [25] that padiased [18] address joint channel assignment, routl!’lg, and sdfnng;iu_
channel assignment may not be feasible in a practical gd2#i. problems. These papers make an ass_“mP“‘?” of synch_ronlzed
In addition, the above approaches require changes to the MR@e-slotted channel model as scheduling is integratechen t

layer. Thus, the above approaches are not suitable witemtyr Methods. This makes modeling network throughput straoghtf
available commodity hardware ward and consideration of a joint channel assignment anishigou

) i ) ) ) o problem practical. However, the synchronized time-stbtteodel
Static/Quasi-Static Channel Assignment in Multiradio Net 5 hard to implement in commodity radios that use 802.11, as

works. There have been many works that circumvent fast chaniglggo 11 scheduling is done following a CSMA-based random
switching by assigning channels at a much larger time seale {ccess paradigm. In addition, these works often make irtipadc
a multiradio setting. This solution is deemed more prattisa assumptions. For example, [15]'s approach requires eratioer
there is neither a need to modify the 802.11 protocol or need fot 5| maximal sets of non-interfering links (independemts3,
interfaces with very low channel switching latency. and [16] considers networks with bounded “interferencereies”

In particular, [8] assume a tree-based communication matte |, remaining related works, [33] derives upper bounds on
to ease coordination for optimizing channel assignmemhilSi capacity of wireless multihop networks with multiple chats)

tree-based communication p_atterns have been used i_n_[Bé]. Tnd [26] investigate granularity of channel assignmenisites
above schemes do not quantify the performance of theirisokit by assigning channels at the level of components (link$igatr

yvith respect to the optimal_. In addition, [11] considers irmi_ur_n- general graph component) in single radio networks.
interference channel assignments that presénennectivity. On the theoretical front, the related Ma-cut problem has

None of the above schemes preserve the original networH-topBeen studied extensively. In particular, [14] gives a camst

o9y, and hence, may lead to inefficient gss!gnments anOIr'["mt'approximation algorithm using semidefinite algorithm fengral
in a more general peer-to-peer communication.

) N _ ~graphs, while [34] consider uniformly randod, , graphs and
Topology Preserving Scheme¥o facilitate independent routing give an approximation scheme. As a hardness result, [35Epro

protocols, our work focusses on developing quasi-statanobl  that unless P=NP, the MaX-cut problem cannot be approxi-
assignment strategies that preserve the original netvepddagy. mated within a factor of —

Prior works on topology preserving channel assignmentesiies
are as follows. Adya et al. [10] propose a strategy wheregy th
assume a hard-coded assignment of channels to interfacgs, a
then determine which channel/interface to use for comnatigic ~ In this section, we describe one of our algorithms for theneha
via a measurement-based approach. They do not discuss Bow@l assignment problem, based on the Tabu search [13] tpehni
channels are assigned to interfaces. In [7], Raniwala grapose for coloring vertices in graph©ur Tabu-based algorithm is cen-
a centralized load-aware channel assignment algorithmeter, tralized. Centralized algorithms are quite practical inafraged”
they require that source-destination pairs with assotiatffic mesh networks where there is already a central entity. Mereo
demands and routing paths be known a priori. In [28], Das.et #ey are amenable to a higher degree of optimization, e&sier
present a couple of optimization models for the static ceanrlpgrade, and use of “thin” clients. Centralized approadiese
assignment problem in a multi-radio mesh network. Howevedhdeed been proposed in various recent works [9], [7], [abH
they do not present any practical (polynomial time) aldurit have also become prevalent in the industry (e.g., WLAN anstme
In [29], the authors propose a linear optimization modelt th@roducts from Meru Networks [36], Tropos [37])

assign channels to interfaces, and then, assign interfacesgh-
bors so that neighors having interfaces with common chann?
can communicate. In contrast, in our model, we assign chg&nn

Fo links directly. In [30],.a purely mea;urement-baseq apph the number of monochromatic edges in the conflict graph. In
is taken for channel assignment to radios (instead of lirtks)e, other words, the channel assignment problem is to find a so-

;)hne rgd!o ‘TtteaCT noqi IS tunedtti:). a comlr)non chtar;nlel tr? PreS§lfon/function f: Ve — K with minimum network interference
? orl_gltnaf opoiogy:; O'\IN(E)\I/er’M IS can be waste utv(;ﬁsgonl(f) such thatf satisfies the interference constraint. Our Tabu-
a few intertaces are availablé. VIoreover, assignmen 8 pased algorithm consists of two phases. In the first phase, we

o radiqs .Sti" _Ieaves the problem of which channgl to usedfor use Tabu search based technique [13] to find a good solition
transmissionflink.In [31], the authors propose a simple greed}fvithout worrying about the interface constraint. In the et

algorithm for channel assignment in multi-radio networkhey hase, we remove interface constraint violations to getailiée
assume a binary interference model and do not show any perfgﬁannél assignment functioh

mance boundsn the most closely related work to ours, Marina
and Das in [9] address the channel assignment to commuoricatFirst Phase. In the first phase, we start with a random initial
links in a network with multiple radios per node. They propossolution f; wherein each vertex iiv. is assigned to a random

Other Related Works. In other related works, [32] proposes a
hybrid channel assignment strategy: some interfaces onda no
have a fixed assignment, and the rest can switch channels as

L
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IV. CENTRALIZED TABU-BASED ALGORITHM

Igorithm Overview. Recall that our channel assignment prob-
m is to color the vertice¥. of the conflict graphG. using K
Eolors while maintaining the interface constraint and mizing



color in K. Starting from such a random solutigly, we create
a sequence of solutionfy, f1, f2,..., fj,..., in an attempt to
reach a solution with minimum network interference. In e
iteration (j > 0) of this phase, we create the next solutifn ,
in the sequence (fronf;) as follows.

The ;' Iteration.Given a solutionf;, we createf;; as follows.
First, we generate a certain number (say,of random neigh-
boring solutions off;. A random neighboring solution of; is
generated by picking a random vertexand reassigning it to a
random color in(KC — {f;(u)}). Thus, a neighboring solution of
f; differs from f; in the color assignment of only one vertex.
Among the set of such randomly generated neighboring soisiti Fig. 2. Merge operation of second phase. The two figures a&edmmu-
of fj: we pick the neighboring solution with the lowest networli‘ication, graphs of the network before and after the mergeal_jpe. Labels

. . . on the links denote the color/channel. Here, the merge tiperis started at
interference as the next solutigh, ;. Note that we do not require 1o b changing all its 1-colored links to color 2.

I(fj+1) to be less thar(f;), so as to allow escaping from local

minima.

Tabu List. To achieve fast convergence, we avoid reassigning tR&cond PhaseNote that the solutiorf returned by the first phase
same color to a vertex more than once by maintainingba list May violate interface constraints. Thus, in the second @has
7 of limited size. In particular, iff, ; was created frony, by ehmmgte the interface constralr?ts by repeated appdmanrf. the
assigning a new color to a vertex then we addu, f; (u)) to the following “merge” procedure. Given a channel/color asgignt

tabu list7. Now, when generating random neighboring solution§elution f, we pick a network node for the merge operation
we ignore neighboring solutions that assign the cdido « if @S follows. Among all the network nodes wherein the intesfac

(u, k) is in 7. constraint is violated, i.e, whose number of radios is lbas the
number of distinct colors assigned to the incident commatioo
Termination.We keep track of the best (i.e., with lowest interjinks we pick the node wherein the difference between tlwab
ference) solutionf..; seen so far by the algorithm. The firstyyg terms is the maximum. Letbe the node picked as above for
phase terminates when maximum number ($ay,:) of allowed  the merge operation. We reduce the number of colors inciolent
iterations have passed without any improvement (f,c;). In; py picking (as described later) two colds and k- incident on
our simulations, we set,q. to |V|. Since network interference i, and changing the color of all;-colored links tok,. In order
1(f) takes integral values and is at moSt:|)?, the valuel (fest)  to ensure that such a change does not create interface aiabstr
is guaranteed to decrease by at least 1,in. = |Ve| iterations yjpations at other nodes, wieratively“propagate” such a change
(or else, the first phase terminates). Thus, the time comtplek 15 gl &, — colored links that are “connected” to the links whose
the first phase .is boundgd l@(rd|vc|3.), since each iteration can ¢qjor has been just changed fram to k2. Here, two links are
be completed inO(rd) time wherer is the number of random gaiq to be connected if they are incident on a common node.
neighbori_ng function_s generated atids the maximu_m degree of Essentially the above propagation of color-change enstmats
a vertex in the conflict graph. Note that network interfe@t o any nodej, eitherall or noneof the k;-colored links incident
a neighboring solution can be computeddnid) time. A formal 5, j are changed to colok,. See Figure 2. Completion of the
description of the first phase is shown in Algorithm 1. above described color-change propagation marks the ctiople
of one merge procedure. The above described merge procedure
reduce the number of distinct colors incident:dsy one, and does
not increase the number of distinct colors incident on areiot
node (due to the all or none property). Thus, repeated agtjuit
of such a merge operation is guaranteed to resolve all agerf
constraints. Note that a merge operation probably will lteisu
increase in network interference. Thus, for a given nodee pick
those two colork; andk. for the merge operation that cause the
least increase in the network interference due to the cdeple
merge operation.

Algorithm 1: First Phase of Tabu-based Algorithm.
Input : Conflict GraphG.(Ve, E.); Set of channelsk.
Output: Channel Assignment Functiofy..; : Ve — K.
Start with a random assignment functigiy;
Joest = J0;  Ipest = [(f()); T=null; j=0; =0
while I(f;) > 0 andi < imqas do
Generater random neighbors of;;
Each neighbor is generated by randomly picking
auin Ve andk € K s.t.k # f;(u) and (u, k) ¢ 7,
and changingf;(u) to k
Let f;41 be the neighbor with lowest interference.

V. DISTRIBUTED GREEDY ALGORITHM (DGA)

Add (u, fj(u)) to T.
If 7 is full, delete its oldest entry;
if (I(fj+1) < ITpest)
then Inest = I(fj+1);  foest = fi+15 i =0;
elsei =i+ 1;
endif;
J=J+1
end while
RETURN fpest;

In this section, we describe our Distributed Greedy Aldomnt
(DGA) for the channel assignment problem. Our choice ofdyee
approach is motivated by the following two observations.

Max K-cut Problem in Random GraphsAs described before,
the Max K-cut problem on a given grapfi is to partition the
vertices ofG into K disjoint subsets such that the sum of number
of edges with endpoints in different partitions is maxintize
In [34], the authors considef,,, graphs which are defined as
random graph over vertices where each edge exists with a




uniform probability ofp. The authors design an algorithm withAlgorithm 2: Centralized Greedy Algorithm.

an approximation ratia — - (wherez > 1) for the Max K -cut Input : Conflict GraphG¢(Ve, E¢); Set of channelsC.
problem in suchGy,, graphs. In particular, they obtain a lower OQutput: Channel Assignment Functiofi: V. — K.
bound on the size of the MaX'-cut in G, graphs problem |nitialization:

using a simple greedy heuristic, and obtain an upper bouimdj us flu) =1,Yu € Ve

a relaxed semidefinite program given by [14]. They show that Repeat

the lower and upper bounds are close with very high protigbili (1) Choose the paifu, k) € (Ve x K), such that when

In effect, the authors show that the greedy heuristic dedive®  ¢(y) is assigned td, the

1 — 5 factor approximation solution with very high probability. interference constraint is not violated and the total
The greedy heuristic proposed in [34] for Madk-cut works by  network interferencel( f))

deciding the partition of one vertex at a time in a greedy neann decreases the most

(i.e., place the vertex in the partition that results in maxing (2) Setf(u) =k

the number of edges with endpoints in different partitions) Until I(f) cannot be decreased any further.

Conflict Graph isG p. It can be shown that a network formed

by randomly placed nodes in a fixed region generates a random

conflict graph G. which is alsoGy,,. Here, we assume anthe distributed setting, multiple link-color pairs may bieked
interference model wherein two communication linksv) and simultaneously across the network by different nodes. &#ygp
(r, s) interfere with each other depending on the locations of thke decision of which pair is picked is based on the local
nodesu, v, r, and s (as is the case with protocol interferenceénformation. Lastly, to guarantee termination in a disttéx
model [1]). Now, the verticed.,,lrs € V. representing the setting, we impose additional restriction that each pfairk)
communication linkgu, v) and (r, s) are connected i if and is picked at most once (i.e., each vertexe V. is assigned
only if the communication linkgu,v) and (r, s) interfere with a particular colork at most once) in the entire duration of the
each other. Thus, the probability of an edge between twacesrt algorithm.

of V¢ depending only on the locations of the involved network In the distributed implementation, each vertex= [;; € Ve
nodes, and since the network nodes are randomly placed, tioeresponding to the linKi, j) is ownedby i or j, whichever

probability of an edge between two verticeslin is uniform. has the higher node ID. This is done to ensure consistency of
The above observations motivate use of a greedy approach dofor information across the network. Initially, each esrin V.
our channel assignment problem. is assumed to colored 1. Let > 1 be the parameter defining

the local neighborhood of a node. Based on the information
available about the colors of links in the-hop neighborhood

of i, each network nodé selects (after waiting for a certain
random delay) a(u,k) combination such that (iy = [;; is
owned by, (ii) changing the color ofu to k£ does not violate
fhe interface constraint at nodeor J, (i) the pair (u,k) has

Centralized Greedy Algorithm. We start with presenting the
centralized version, which yields a natural distributegliemen-
tation. In the initialization phase of our greedy approaeach
vertex of V.. is colored with the colort. Then, in each iteration
of the algorithm, we try to change the color of some vertex i

a greedy manner without violating the interface constratihiis not been selected before Byand (iv) the pair(u, k) results in

strategy is different from the Tabu-based algorithm, whees the largest decrease in the “local” network interferendeen the

resolve interface constraint violations in the second ehakile ) .
not worrying about introducing them in the first phase Inheacn0dez sends &l or Request message to nodg The node;
iteration of the greedy approach, we try to change the cdior fesponds with th€ol or Repl y message, if and only if changing

Some verte V. 1o & colork. We look at all possible pairs of fhe color ofu to & still does not violate the interface constraint
vertex € Ve ' poSSIDle palrs ot nodej. On responding with th€ol or Repl y message, the

u andk, considering only those that do not result in the violation .

. . . . node j assumesthat the color ofu has been changed fa On

of any interface constraint, and pick the péir, k) that results o ) ;

) . . . receiving theCol or Repl y message forj, the nodei sends a

in the largest decrease in network interference. The alguori . .

. . - . Col or Updat e(u, k) message to all itsn-hop neighbors. If

iterates over the above process, until there is no pair ahd &

. a Col or Repl y message is not received within a certain time
that decreases the network interference any further. Nwted period, the node abandons the choice dfi, k) for now, and

;iiirteé( ;nrvc (renzyr/ebe F;f:stde gu:gptlgr:;ﬂzst;nbgfaerggt;féﬁggzitarts a fresh iteration. Since each pairk) is picked at most

Wever, w gu in u . nce, then the total number of iterations (over all nodeshin
monotonically decreases the network interference. Iniquaa, . .

; : . . . above algorithm is at mosD(|V;|K). The pseudocode for the
as noted in previous section, since the network interfer¢akes distri . ) ] .
) . 9 . . istributed greedy algorithm that runs in every nade V is
integral values and is at mo§#/.|)<, the number of iterations of shown in Algorithm 3
. . 2 . . . .

the greedy algorithm is bounded Bjic|)”. Since each iteration The above Distributed Greedy algorithm is localized, and ca

can be complete_d 'm(dKWC.')’ where K s the total ””’T‘ber be made to work in dynamic topologies. Our simulation result
of colors andd is the maximum degree of a vertex in the

conflict graph, the total time complexity of the greedy aityon showed that the above distributed algorithm performs almos

) . . same as the centralized version, due to the localized nafture
is O(dK|V.|®). The pseudocode for the centralized verison of tf’ﬁ;-]e network interference objective function. The inputwest
greedy algorithm is shown in Algorithm 2.

parameters of traffic and interference are measured asssisdu
Distributed Greedy Algorithm (DGA). The above described in Section II.

greedy approach can aI_so .be eaS|_Iy dISt”bUtEd. by U_Smgaaied 2Such an assumption may need to be later corrected througimanivation
greedY_ strategy. The d's_t”bl«_'ted |mpleme_ntat|on d'ffeumc the with i if the Col or Updat e( u, k) message is not received froinwithin a
centralized implementation in the following aspects. tirsn  certain amount of time.



Algorithm 3: Distributed Greedy Algorithm for each nodec of semidefinite program is as follows.
v

Input : “Local” network and conflict graph; set of channels Minimize CX
K. such that A X =b;, 1<i<m, and
Output: Channel Assignment (i.ef,(u)) for all links u € V.. X =0
incident on node. -
Repeat whereC, A; (Vi), and X are all symmetric: x n matrices, and;
Among all pairs(u, k) whereu € V. is owned by: and is a scalar vector. The constraifit = 0 implies that the variable
ke (to be computed) matriX must lie in the closed, convex cone of
that is not already chosen and does not violate a positive semidefinite matrix. Also, the(dot) operation refers
interface constraint at to the standard inner product of two symmetric matrices.
choose the one which produces largest decrease in  As mentioned in Section Il, our channel assignment probkm i
local interference. essentially the Max<'-cut problem in the conflict graph with the
SendCol or Request (u, k) to node; where additional interface constraint. Below, we start with emting
u=(i,7). the SDP for the Maxkx -cut problem from [14]. We then extend
Wait for Col or Repl y(u, k) message from nodg it to our channel assignment problem by adding the interface
If Col or Repl y(u, k) message is not received within a constraint.
certain time ]
Abandon the choicéu, k). SDP for Max K-cut. Let y, be a variable that represent the

color of a vertexu € V.. Instead of allowingy,, to take 1 toK
integer values, we defing, to be a vector in{ay,as,...,ax},
where thea; vectors are defined as follows [14]. We take an
equilateral simplext in RE~! with verticesby, by, ..., bx. Let

Until Local interference cannot be decreased any further,
or all (u, k) combinations

have already been chosen.
When Col or Request (u, k) message is received from

node j, whereu = (i, j): ci = ittt th50) he the centroid of, and leta; = b; —cx
If assigning channet to link « does not cause for 1 <i < K. Also, assumea;| =1 for 1 <i < K. Now, the
interface constraint violation Max K-cut problem can be formulated as an integer quadratic
SendCol or Repl y (u, k) message to nodg program as follows [14].
When Col or Repl y(u, k) message is received from node IPMax-K:
J: o K—-1
Set f(u) = k and sendCol or Updat e( u, k) Maximize K Z (1 = yuyo)
message to “local” neighborhood (wv)€E,
When Col or Updat e(u, k) message is received: such that Yu € {a1,a2,....,ax}

Update locally maintained channel assignment of
links in the local network graph.

Note that sincey;.a; = == for i # j, we have:

_{07 |fyu:yv
- K

V1. BOUNDS ONOPTIMAL NETWORK INTERFERENCE 1= yuyo 1 if yu # yo.

In this section, we derive lower bounds on the minimurr|1t ; Constraint. W dd the interf traint to th
network interference using semidefinite and linear prognarg nterface Lonstraint. We now a € interface constraint to the

approaches. These lower bounds will aid in understandieg tﬂbove formulation for Max(-cut. For eachi € N, let

quality of the solutions obtained from the algorithms presd , |E(3)] '
in previous two sections. ;= 0(B@),R) — (| ", | —o(B@), R:))/(K ~1),

wherec(E(i), R;) is as defined as follows:

o (S, K) = pafa+1) + (g( = Ba(a - 1)7 (2

A. Semidefinite Programming Formulation

In this section, we model our channel assignment problem in

terms of a semidefinite program (SDP). where o = L‘—ISJJ and 3 = |S| mod K. It can be shown [42]

Semidefinite Programs.A semidefinite progranids] is a tech- that the number of monochromatic edges in the clique of |$ize
nique to optimize a linear function of a symmetric positiveWhen colored byK colors is at least(S, K). Now, we add the
semidefinite matrix subject to linear equality constraints.following constraint to represent the interface constrain
Somidefinito programming i_s_a spec?al case of convex program Z Yoo > ®; Vie N @)
ming [39], since a set of positive semidefinite matrices tariss
a convex cone. Semidefinite programs can be solved in polyno-
mial time using various techniques [40]. The reader is reer Recall that vertices inZ(i) form a clique in the conflict graph,
to [38], [41] for further details on semidefinite programigiand and cannot be partitioned into more th&n partitions to satisfy
its application to combinatorial optimization. The starmtiéorm our interface constraint. Nowe(E(i), i;)) gives a lower bound
on the number of monochromatic edges in this cligaé:)) [42],

3A matrix is said to bepositive semidefinitéf all its eigen values are and thus’(‘ él)l) _U(E_(Z)vRi)) IS an upper bound on the number
nonnegative. of non-monochromatic edges. Since we know that, = 1 for

u,vEE(1)



any monochromatic edg@:, v) and y,.y, = K;jl for any non- B. Linear Programming Formulation
monochromatic edge, we have constraint in the above Equatio In our simulations, we observed that solving the semidefinit

Note that even though Equation 3 is a valid constraint, inO‘f‘orogram formulation presented in the previous section ed® t
not necessarily restrict the number of colors assigned ttices long time (12 hours on a 2.4 GHz Intel Xeon machine with
of E(i) to R;. Thus, thelPy.,x augmented by the above,sg RAM for a 50 node network) and memory, and hence, may
Equation 3 only gives an upper bound on the number of NORy; pe feasible for very large network sizes. Thus, in thigise,
monochromatic edges. we formulate our channel assignment problem as an integali
program (ILP), and use the relaxed linear program with aufuid
constraints to estimate the lower bound on the optimal nétwo
interference. The LP formulation can be solved in a much less
time (less than an hour vs. 12 hours) than the SDP formulation
but yields a slightly looser lower bound than SDP on the ogtim
rr]‘;[etwork interference. Note that the SDP and LP formulatimmes
used only to demonstrate the performance of our Tabu-bas#d a

Relaxed SDP for Channel AssignmentSince we cannot solve
the integer quadratic prograf,,,.._  for problems of reason-
able size, we relax it by allowing the variablgg to take any unit
vector in RIV<l. Sincey,.y, can now take any value between
and —1, we add an additional constraint to restrigt.yy, to be
greater thanlg—jl. The relaxed SDP for the channel assignme

is as follows, Greedy algorithms.
K—1 Integer Linear Programming. Recall that N is the set of
Maximize K Z (1 - yu-yv) network nodesp; is the number of radio interfaces for a noge
(u,v)€Ee, K is the set of available channels, a@d(V., E.) is the conflict
such that graph. Also,E () represents the set of verticeslinthat represent

the communication links incident on nodes N.

Yu € R'VC| and |yu| =1 . . . .
We use the following set of binary integer (taking values O or

Yu-Yo > 7o T Yu # v, and 1) variables and constraints in our ILP formulation.
Z Yuye > 8; Vie N o VariablesY,,, for eachu € V. andk € K. The variable
. - 19 N . . . . .
w B () Y., is 1 if and only if the vertexu € V. is assigned the

channelk. Essentially, the variableg,;, define the channel

assignment function. Since, each verteXiris given exactly
Standard SDP Formulation. Now, we convert the above relaxed one ChanneL we have the fo"owing constraints.

version into the standard SDP formulation. L&t be the|V:| x

|Ve| symmetric matrix representing the adjacency matrix of the Yur = {0,1}, Vue Ve, VkeK 4)
graphGe, and lete be the|V;| x 1 vector containing all 1's. Now,
let L = d(W.e)—W denote the Laplacian of tH& matrix, where Z Yy = 1, Vu € Ve (5)
d(W.e) is the |V| x |V¢| matrix with W.e as the main diagonal. hek
Finally, let
L(K —1) « VariablesX,., for each edg€u,v) € E.. The variableX.
C= T oK is 0 only if the verticesu,v € V. are assigned different
channel. The following equation defines the value &f,,,
X be the semidefinitéV| x |Ve| matrix representing.,.y, for all in terms ofY variables.
u,v € Ve. Now, the semidefinite program for the channel assign-
ment problem in the standard SDP form (Matrix Notation) [34] Xuv = {0, 1}, V(u,v) € Ee (6)
can be represented as follows. Xuv > Yy + Yo, — 1, V(u,v) € Ee,Vk € K (7)
Minimize C.X The variablesX,. are used to define the network interfer-
such that ence (the objective function defined later).

« Variables Z;,., for each network nodeé € N and channel

diagonal(X) = e k € K. The variableZ;, is 1 if and only if someu € E(7)

Xupw > 1 Yu # v € Ve, has been assigned a chanmglnote that,u represents a
N ) communication link incident on € N.
A;. X >20;, Vie N, and
X =0, Zy., = {0,1}, Vie N, VEe K (8)
o i, Jis a Vel x Vel . ing() Ziy. > Yy, Yu€eE®l), Vie N, Vke K (9)

where eachd;(i € V) is a|Ve| x |V¢| matrix representingz (). _ _
In particular, theA;[u,v] = 1 if (u,v) € E;, and O otherwise. Zik < XE: Yok VieN, Vkek (10)
Also, the inequalities in the above constraints can be atede ueB([®
into equalities by subtracing linear positive variablesrthe left The last equation above is used to enforce that is 0 if
hand side. there is indeed no vertex € E(i) that has been assigned

The solution to the above semidefinite program gives an upper
bounds on the number of non-monochromatic edges, and th&f vertices v andv in V. are assigned same channel, th€p,, can be

lower bound on the optimal network interference can be obthi 0 or 1. However,X,,, will be chosen to be 0 to minimize the objective
unction (see below), as there are no additional consg@amtolving X, .

by subtracting it from Ec|. This semidefinite program can solvedrhe additional constraints in Equation 12 and 13 can be kakgon as
using standard SDP solver such as DSDP 5.0 [43]. derivations of Equation 7.



a channelk. The below equation enforces the interfacée.qg., radio leakage, improper shielding, etc.) [12]. Thmsdeling

constraint usingZ variables. of non-orthogonal (i.e., interfering) channels is a goodaidin
& addition, this also allows us to explicitly utilize non-oogonal
z Ziy <R VieN (11) channels. Finally, regardless of traffic and use of differeran-

= nels, path loss effects can influence the degree of interdere

between two links — and thus, result in fractional intenfee

Objective Function. Our objective function for the above ILP isbetween two links.

to
Z X Non-uniform Traffic and Fractional Interference. Let v and
uv -

v be two vertices in the conflict graph(u,v) (a real number
between 0 and 1) be the level of interference between twe link
|x:orresponding to the vertices and v when both links carry
saturated traffic. The level of interferencg., v) between pairs of
links v andv can be computed using techniques similar to [21];

Minimize
(u,v)eE,

Linear Programming. Due to NP-hardness of integer linea
programming, solving the above ILP is intractable for rewdiy

sized problem instances. Thus, we relax the above ILP toeardin ) ) ) S > .
program (LP) by relaxing the integrality constraints. Intjzailar, Section IX gives a detailed description of how it is compuied

we replace the Equations 6, 4, and 8 by the following equatiof?ur .expe.rimental study. Le(u) andt.(v) denotg the normallized
traffic (with respect to saturated traffic) on the links cepending

0< Xuw,Yyur, Zir,. < 1L to the vertexw and v respectively. Note that in our network

model, we assume that the traffic is known a priori. Measurgsne

The solution to the relaxed linear program gives only a Iow%rf these parameters was discussed in Section Il. Based on the
bound on the optimal solution to the ILP. Through simulaa;i,onil%

. ove notations, the overall network interfered¢¢) for a given
we have observed that the lower bound obtained by the above ¢¢) g

formulation is very loose. Thus, in order to obtain a tightever annel assignment functiof : Ve — K can be defined as
o P follows. Let M = d = . Then,
bound, we add additional constraints as follows. {(w,v)lw, v € Ve and f(u) = f(v)}

Clique Constraint.For each vertex. € V., let S, be the set I(f) = Z t(uw)t(v)r(u,v).

of vertices in a maximal clique containing. As discussed in (u,v)EM

Section VI-A, we can lower bound the number of monochromatic .

edges in a complere graph of siz& | when colored by colors Note thatt(u)t(v)r(u,v) is a reasonable_ way to modgl the level
aso(Su, K) using Equation 2. The above observation yields tl"fé_f interference between the nodeandv with given traffic loads,

following additional constraint. sincer(u, v) is the level of intereference with saturated traffic and
t(u) and t(v), the respective traffic loads, are normalized with

> Xow>0(Su,K) YueVe (12)  respect to the saturated traffic.
vWES, For the generalized interference and traffic model, the Tabu

Since the set of verticeB(i) in V. forms a clique inG. and uses based and Greedy algorithms use the above definition of metwo
at mostR; colors (due to the interface constraint on najlewe interference; no additional changes are required. Silyjldre LP

also have the following constraint. and SDP formulations of the channel assignment problem ean b
generalized by appropriately extending the objective fiong no
Y. Xuw >o(BE(i),R) VieN (13)  other changes are required in the list of variables and cainst
(u,v)EE(3) equations.

The above two additional constraints pose a lower bound on h | ch | ue b
the interference on clique like subgraphs. This helps tacedhe Non-orthogonal Channels. Let c(k1,k2), a value between 0

gap between the actual integer optimum and the reIaxedrIin@Qd 1, denote the level of interference between two channels
solution k1 and ko. For non-orthogonal channels, the overall network

interference can be further generalized as follows for amiv

Number of Variables and Constrain®he number of variables in .p5nnel assignment functioh: Ve — K.

the above LP formulation i$E.| + K(|Ve| + N), and the total

number of equations/constraints ax@Ve| + |N|) + K(2|Ve| + I(f) = Z t(w)t(v)r(u, v)e(f(u), f(v)).
2|N| + |E¢|) including the integrality constraints. We solve the (u,v)€E.

linear program using GLPK [44], a public-domain MIP/LP sslv

As before, Tabu-based and Greedy algorithms can use the
above definition of network interference without any aduliil

) ) ) . changes. However, in the LP formulation, we need to replaee t
In the previous sections, for sake of clarity, we made VH'OLEquations 7 by the following

assumptions, viz., uniform traffic on all communicationkbn

a bi_nary interferenge model, ar_1d orthogonal channel_s. is thy,, > Yk, 4 Yok, — 2+ c(k1, k2), Y(u,v) € Ec,Vki, ko € K
section, we generalize our techniques to relax these assunsp

These generalizations are quite useful in practical depdoys. Unfortunately, the SDP formulation cannot be generalizag- e
For example, the links in the network communication graply maly for non-orthogonal channels. The problem arises frora th
carry different amounts of traffic. Thus, the average imtenfice difficulty in choosing appropriate vectos; such thata;.a; is
must be weighted by traffic as interfering traffic is not thenea proportional toc(i, 7) for all channelsi, j € K. The values:(i, 5)
for all interfering link pairs. Also, channels — even wheeyttare are characteristics of the channel spectrum, and can beunegas
orthogonal in theory — do interfere due to device impertei independently.

VIlI. GENERALIZATIONS
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VIIl. SIMULATION RESULTS Performance Metric. We evaluate the performance of our algo-

In this section, we study the performance of our designdtihms in ran”dom networks using the metric “fractional nestkv
algorithms for the channel assignment problem throughneite  interference.” Given a channel assignment functioromputed
simulations. The main goal of the simulation based evauatiPy @n @lgorithm, thefractional network interferencés defined
is to understand the performance of our algorithms in larg@S the ratio of network interferendé(f)) and the total number
scale network scenarios. In Section IX, we will present itteda ©f €dges in the conflict graph. This represents the number of
experimental evaluation of our algorithms on a 11-node imul€onflicts that remain even after channel assignment relapithe
radio mesh testbed. We present our performance resultsvepr t1Umber of conflicts in the single-channel network. The foael
different settings. First, we evaluate a graph-theoregitgumance Network interference for the random algorithm is given By

metric, and then, evaluate throughput improvement usirgy n&here R is the number of radios on each node. Note that the
simulations. We start with discussing various algorithreecufor @Pove performance metric is purely graph-theoretic andéen
comparison. we do not use any network simulator for these experiments.

Algorithms. In addition to our designed algorithms (Tabu-baseResults.In Figure 3, we plot the fractional network interference
and Distributed Greedy) and the lower bounds obtained ftwen tfor varying number of radio interfaces/node, in dense araissp
linear and semidefinite programming techniques, we alssepte networks using 3 and 12 channels. In general, both our ftgosi
results for two other algorithms for comparison. In patticuwe perform extremely well compared to the CLICA-SCE and random
simulate a modified version of the centralized CLICA heigist algorithms. The Tabu-based algorithm almost always pegor
presented in [9] for a slightly different version of the chah better that than the Distributed Greedy algorithm, excepemw
assignment problemWe refer to the modified algorithm of [9] the number of radios is very small. When the number of radios i
as CLICA-SCE. We also simulaterandomalgorithm which uses very small, the second phase of Tabu-based algorithm igdorc
only a limited number of channels (equal to the number ofaadio perform many inefficient merge operations which leads to
interfaces), assigns a different channel to each radiafaute, performance degradation.
and then, selects a random interface (and hence, chanmel) foThe performance of our algorithms compared to the lower
transmitting a packet. See Section Il for a discussion deot bounds obtained from the LP and SDP formulations shows that
related works. our algorithms deliver very good solutions, particularty farger
We note here the network interference metric is actually rmumber of radios. Note that the vertical axis of the plots is
localized metric since a communication link interfereshwainly presented in log-scale for ease of viewing. The performance
“neighboring” communication links. Thus, we observed ttiet  difference between the Tabu-based algorithm and the SDErlow
centralized version of the greedy algorithm performed atmobound is about 1% to 4% when the number of radios is large.
exactly the same as the Distributed Greedy algorithm. We can also see that the SDP formulation delivers a muchrbette
lower bound than the LP formulation, for all parameter value
A. Graph-Theoretic Performance Metric However,_as we noted t_;efor_e, running SDP is significantlyemor
) . computationally expensive (in terms of time and memoryntha
In this set of experiments, we generate random networksrby r3 p

domly placing a number of nodes ".‘ a fixed region,. and evaluate.l_he comparison of plots for dense and sparse networks bring
various algorlthms_based on a certain graph-theoretmpaefnce. out interesting features. The fractional interferenceuced with
metnc. Tp solve_llnear programs, we_used GLPK [44_] W_h'_cﬂmrease in number of radios per node; however, this trend
is a public-domain MIP/LP solver, while to_ solve sem'det_m_'tsaturates beyond a certain number of radios. This satorptimt
programs, we usec_i DSDP 5.0 [43] [45] which uses an efﬂmegt reached with smaller number of radios for sparse networks
interior-point technique. than for dense networks, for the same number of channels. Thi

Graph Parameters. We consider two sets of random networkis because the denser networks can potentially support more
viz., dense and sparse networks, generated by randomlinglacconcurrent transmissions than the sparse networks. Sitrelads

50 nodes in500 x 500 and 800 x 800 square meters of areawere observed in [9].

respectively In dense networks, the average node degree is

around 10, while in sparse networks the average node degree i

around 5. Each node has the same number of radio interfawbs, B- Ns2 Simulations

has a uniform transmission and interference range of 15@miet |, ihis set of experiments, we study the impact of channel

Two nodes are (,:onnectgd by a communication link if they ligssjgnment in improving throughput in an 802.11-based mesh
within each other'sransmission rangeAlso, two communication henyork. We compare the performance of various algorithgns b
links (i, j) and(g, k) interfere with each other if and only if either 1o 5 ring thesaturation throughputising ns2 simulations over
g or h lies within theinterference rangef i or j; this is based (5n40miy generated networks. We consider networks of 5@siod
on the protocol interference model [1]. We assume orthdgonanqomly placed in 000x 1000 square meters area. The transmit
channels and uniform traffic on all links. power, receive and carrier sense thresholds in the defettihg
5In CLICA [9], a communication link may multiplex between rtiple pf ns2 are such thqt the transmission range is 250 metershand t
channels, but in our network model each communication linksuexactly interference range is 550 meters. We used the same defdidt ra
one channel for transmission. We modify CLICA to use our mkwnodel parameters as in ns2 [46]’ except that we set the channetatata
SWe evaluated networks of size up to 750 nodes and varyingitiens to 24Mbps. All transmissions are unicast transmissiorisvidhg
with similar performance results for all algorithms. Howewthe LP and SDP ’ . -
formulations for networks of size larger than 50 nodes taaleasonably long t_he 802.11 MAC protocol with RTS/CTS, and the packet size is
computation time. fixed to 1000 bytes.
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Fig. 3. Fractional network interference of solutions deliveredvayious algorithms compared with the lower bounds in denssparse
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Fig. 4. Saturation throughput in ns2 simulations for 12 cted® and various traffic models, viz., (a) Single hop, (b) tMubp Peer-to-Peer, (c) Multi-hop
Gateway.

Performance for Various Traffic Models. We use three different (as we are experimenting with an 802.11a like system). Weiobt
traffic models. the saturation throughputs as follows. For a particular loemof

« Single-hop traffic model This model consists of identical radios and channels, we run a series of simulations, inogas
poisson traffic for each communication link. The single-hofhe offered load each time, starting from a low value. We stop
traffic model is useful to evaluate the performance in th&hen the throughput does not increase any further with asere
case when all links in the network carry the same load. in the offered load.

« Multi-hop peer-to-peer traffic modeln this model, 25 ran-  We note that in all the three traffic models, our algorithms
domly selected source-destination pairs communicategusiperform very well. We also see that the observations we made
multihop routes. The routes are computed statically udieg tfrom the earlier graph-theoretic evaluations translatél wéo
shortest number of hops as the metric, and do not change ns2 results. The saturation throughput remain same afte
for the lifetime of the simulation. a certain number of radios, as inferred in the graph-th&oret

« Multi-hop gateway traffic modelln this model, 4 random simulations. Also, the relative performance of the aldoris in
nodes are selected as gateways, and 25 source nodes sie@mths2 simulations is the same as observed in the graphetieeo
traffic to their nearest (in terms of hops) gateway. Routes agimulations. This indirectly establishes the merit of th®sen
determined as in the previous traffic model. Such a traffinterference model, optimization objective, and use ofpbra
model will be common when the mesh network is used faheoretic measures as a method of performance evaluation.
Internet gateway connectivity.

Note that in the last two traffic models the traffic on the link81odeling Non-Orthogonal Channels. So far, we have used
is non-uniform. The traffic information is used in the channeonly perfectly orthogonal channels. This however is a Etiin
assignment algorithms as suggested in Section VII. in systems such as 802.11b where few orthogonal channels are

Figure 4 plotssaturation throughputagainst number of radio available. Since our techniques are general enough to éandl

interfaces per node for the three traffic models and 12 chenneon-orthogonal channels (Section VII), we now model a non-
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w A. Testbed

Tabu-based - 11 channels —+—

Dist. Greedy - 11 channels —=— : . . . .
il Tabubased - 3 channels < | The mesh testb_ed used in our experiments is an indoor wareles

Dist. Greedy - 3 channels & testbed that consists of 11 nodes each of which is a Soel8]s [4
10 Single Channel ---m--- 4

net4801 embedded computer running Pebble Linux [49] with th
Linux 2.4.31 kernel. The PCI-slot in the embedded computer
is expanded into 4 mini-PCI slots using RouterBoard 14 [50]
which allows us for using 4 mini-PCl wireless cards. We use
r ) three 802.11 a/b/g mini-PCI wireless cards based on AtHétds
chipset with external antennas in each mesh node. We use the
latest madwi fi [52] driver for the 802.11 interfaces. In our
experiments, we configured the 802.11 interfaces in 802ridde
Fig. 5. Saturation throughput in ns2 simulations when using nNoyxs there are twelve orthogona| channels and the commuomcati
orthogqnal channels with 802.11b—|ike multi-channel mdti# chan- range of each wireless node is less compared to 802.11b/gsmod
nels with varying degrees of interference; 3 channels areafly so that we could get different multi-hop topologies withidoors.
orthogonal). Due to board crosstalk or radio leakage [10], [12] there is
interference between the radios in the same node even whgn th
are configured to separate orthogonal channels. In ordeven o

We assume an 802.11b like system where there are 11 chanrfd&n€ this, we separated the three external antennas aaddist
with only 3 of them being mutually orthogonal. For modeling°f about 1.5 feet based on measurements similar to [12]. iNish

the interference between non-orthogonal channels, wevidhe SEtUP, we could use 7 (channels 36, 44, 52, 60, 149, 157, 165)
technique outlined in Section VII. We use the data from [4¥] toUt Of the 12 orthogonal channels in each mesh node without
model the “weighted” nature of conflicts. This data is obsgin interference between different radios on the same node.

based on a simple analysis of the amount of overlapped sipectr

between every pair of channels in 802.11b. We also did direct

measurements on an 802.11b testbed to estimate interfereRe Generating communication graph and conflict graph

between non-orthogonal channels and the values we obtareed 1o noges in our mesh tesbed are static and in order to generat
similar to those quoted in [47]. Since such measurementbean jittarant topologies, we used different transmit powers.the

very much hardware and environment specific, we stick to ﬂ?—:‘?(periments reported in this paper, we have used two differe

data in [47]. ) ) ) transmit powers (11dBm and 15dBm) to generate one sparse and
In the ns2 simulator, we model inter-channel interferense 8, gense topology. The first step in our experimental proeed

follows. Physmal layer frames transmitted on chaﬂne{arnvmg is to generate the communication graph for a given configurat

at a radio interface tuned to channiel are reduced in pOwer ot ,4es The communication graph is generated by allowdat e

depending o.n the degrge of non-interference. For exampee, 'node to transmit broadcast packets one after another anthel

ki-frame arrives a_t & -interface, the frame_ does not ur_'derg(?mdes measuring the delivery ratio and througput. Thisstakeut

any poyver reduction. On the other hand, ifkaframe arrives O(n) time, wheren is the number of nodes in the network. In our

at ak:g-lnterfa_\ce, where; ar_1d ko are perfectly ortr_logonal, then study, we repeat the above procedure multiple times andsehoo

the kq-frame is completely.snenced: Power reduction bgtween Offks with delivery ratio more tham0% as the stable links in

and 100% occur for other intermediate cases. In the simuki® o nonyork and use only these links. The reason behind this

interference (e.g., carrigr-sense or collisions) is dated only is that the links that have poor delivery ratio are very Unista
after such power reduction. . . . making it harder to get good statistical confidence in theltes

We use the peer-to-peer multihop traffic mgdel (as. defln%th runs of reasonable lengths. Also, the number of stables|
before) to show the perforr_nance of our algorithms with noRg ,ch Jess compared to the total number of possible links in
orthogonal channels. See Figure 5. We observe that bothlour,g. hetwork. This also reduces the time to compute the cemflic
gorithms perform better when using all available 11 chasitiedn oy yeen link pairs. Among the 7 orthogonal channels, cHanne
when using only the 3 mutually orthogonal channels. Theofact) 49 157 165 are in the upper band of the 5GHz spectrum and the
of |mproyement is less in the Tabu-based algor!thm. gomparﬁﬁk characteristics using these channels are signifigatiffierent
to the D|str|buted_Greedy algorithm due to the inefficiendy Qrom the rest of the 4 channels we considered in the lower
_the merge ope_ratlons. Overa_II,_ use of non-orthogonal cﬂsiannand middle band. Since all the channel assignment algasithm
is a better choice than restricting channel assignmentsnlp 0.,ngjgered for the study here assume that all channels ttikee a
orthogonal channels. we had to restrict our study to the 4 channels only (i.e, chinn

— 36, 44, 52, 60).
IX. EXPERIMENTAL EVALUATION Once the links in the communication graph are decided, we

In this section, we present an experimental evaluation of oschedule pairs of links simultaneously and measure thediumut
channel assignment algorithms compared to the random eharon each link in the presence of transmission on the other Ifnk
assignment algorithm and CLICA-SCE algorithm. We start bthere arem stable links in the network, this measurement takes
describing our testbed and then discuss about generatngoti  O(m?) time to complete. The conflict graph is then computed
flict graph for a given topology of mesh nodes. We then descrilnsing the method used in [21]. The whole process of generatin
the channel assignment procedure and present the perfoemathe conflict graph is automated and the conflict graph is fed as
results. input to the channel assignment algorithms.

Saturation Throughput (Mbps)

Number of Radio Interfaces per Node

orthogonal channel situation.
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C. Performance Results case, there is a significant increase in aggregate throtighpu
we use saturated load on all staHFg network. This shows the effectiveness of using good reélan

In our performance study, A ignment algorithms

links as determined while generating the communicatiorplyra
for each transmit powers simultaneously. Each experiment i
repeated 10 times and the average value is reported. Figure 6

and 7 show the aggregate throughput in the network when usin .
channel assignments from our Tabu-based and Greedy higbrit 9n this paper, we have formulated and addressed the channel

X i t bl i Itich | wirel h network:
compared to the random channel assignment and CLICA-SS%SIgnmen problem In- muitichannet WIreless mesh NEworks
Where each node may be equipped with multiple radios. We

algorithms for two different topologies (sparse topologsing have presented centralized and distributed algorithmisatbsign

iéggm ttrfr?ssrrr?iltt zsvvéfrm'r;"ai:oggg; \?ngaliinsﬁox?ﬁéogy USINY annels to communication links in the network with the obije
P ) ggeeg%tf minimizing network interference. Using linear programg

?ﬁfgzg(wtg?:ggpﬁgsvéhfgsgsmg the same channel in all IInkghd semidefinite programming formulations of our optimiaat
: blem, we obtain tight lower bounds on the optimal network

. r
For the sparse tqpology, F_lgure 6(a) shows the case when eﬁﬁ rference, and empirically demonstrate the goodnesthef
node uses two radios and Figure 6(b) shows the case when e

d th dios. W the Tabu-based algorith f&ﬁ lity of solutions delivered by our algorithms. Using gim
noge uses three radios. We see e 1abu-based algonthompertaiinns onns2 and detailed experimental study on a 11-node
extremely well compared the other algorithms in both theesas

There is a notable difference in aggregate throughput wisergu multi-radio mesh testbed, we observe the effectivenessuof o
approaches in improving the network throughput. One of the
4 channels in this topology using our Tabu-based algorithinis Pp In Improving " Hghpu

. X ) future directions is to consider assignment of multiplercteds
is because the level of interference resulting from the cbhan

. . . to each link.
assignment when using 4 channels is much less compared to

when using 2 or 3 channels. The performance of the Greedy
algorithm is not significantly better when compared to thedmn

and CLICA'SCE algorithms . In th? dense tOpO_|Ogy’ bOth Our[1] P. Gupta and P. R. Kumar, “The Capacity of Wireless NeksgrlEEE
algorithms perform well and there is a notable increase @ th ~ Transactions on Information Thegryol. 46, no. 2, 2000.
aggregate throughput when using 3 channels compared tg usif2] S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu, “A New KHChannel

X. CONCLUSION
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